MANUALE TECNICO E DI MANUTENZIONE

VJ10000-TE (4CX7500)

10KW Power Tetrode Amplifier 87.5-108 MHz

Manufactured by R.V.R. Elettronica - Italy

INDICE GENERALE

I - ISTRUZIONI PRELIMINARI E INFORMAZIONI DI GARANZIA	5
II - ISTRUZIONI PER LA GARANZIA DELLA VALVOLA	7
GARANZIA LIMITATA AI PRODOTTI DELLA VARIAN	7
III - REGOLE DI SICUREZZA	8
ATTENZIONE! TRATTAMENTO DEGLI SHOCK ELETTRICI	
PRIMO-SOCCORSO	11
TRATTAMENTO DELLE USTIONI ELETTRICHENOTA BENE	
CAPITOLO 1	13
DESCRIZIONE GENERALE DEL VJ10000-TE 1.1) DESCRIZIONE MECCANICA	
CAPITOLO 2	14
DESCRIZIONE ELETTRICA	
CAPITOLO 3	30
INSTALLAZIONE	
CAPITOLO 4	43
CALIBRAZIONE SCHEDA MISURE VALVOLARE	
CAPITOLO 5	57
MANUTENZIONE 5.1 NORME DI SICUREZZA PRIMO LIVELLO DI MANUTENZIONE. 5.2 MANUTENZIONE ORDINARIA. SECONDO LIVELLO DI MANUTENZIONE. 5.3 SOSTITUZIONE DEI MODULI COMPONENTI 5.4 SOSTITUZIONE DELLA VALVOLA.	
5.5 SOSTITUZIONE DEL FILTRO DELL'ARIACAPITOLO 6	
TARATURA	
APPENDICE A	
CIRCUITI ELETTRICI E PIANI DI MONTAGGIO	

IMMAGINI

FIGURA 1	VISTA FRONTALE	15
FIGURA 2	VISTA POSTERIORE	16
FIGURA 3	VISTA SUPERIORE	17
FIGURA 4	PANNELLO FRONTALE A CERNIERA CON TELEMETRIA	18
FIGURA 5	PANNELLO FRONTALE A CERNIERA SENZA TELEMETRIA	
FIGURA 6	PANNELLO ALTA TENSIONE	
FIGURA 7	VISTA SEZIONE ALIMENTATORE P1	
FIGURA 8	VISTA PIANO ALIMENTATORE P2	24
FIGURA 9	VISTA FRONTALE CAMERA R.F.	25
FIGURA 10	VISTA DELLO ZOCCOLO CAMERA RF	
FIGURA 11	VISTA DEL MECCANISMO MOTORIZZATO DELLA SINTONIA	
FIGURA 12	VISTA SUPERIORE CAMERA RF	
FIGURA 13	VISTE LATERALI CAMERA SINISTRA	
FIGURA 14	VISTA POSTERIORE	
FIGURA 15	DIAGRAMMA INSTALLAZIONE VALVOLA N°1	33
FIGURA 16	DIAGRAMMA INSTALLAZIONE VALVOLA N°2	
FIGURA 17	VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA N°2	
FIGURA 18	DIAGRAMMA INSTALLAZIONE VALVOLA N°3	
FIGURA 19	VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA N°3	
FIGURA 20	DIAGRAMMA INSTALLAZIONE VALVOLA N°4	
FIGURA 21	VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA N°4	
FIGURA 22	REGOLAZIONE FREQUENZA	40
FIGURA 23	SCHEDA MISURE	
FIGURA 24	DIAGRAMMA N°1 SOSTITUZIONE DELLA SCHEDA MISURE	
FIGURA 25	DIAGRAMMA N°2 SOSTITUZIONE DELLA SCHEDA MISURE	
FIGURA 26	COLLEGAMENTO ALIMENTATORE PER CALIBRAZIONE	
FIGURA 27	REPORT MISURE	54
FIGURA 28	MORSETTIERA DI ALIMENTAZIONE	
FIGURA 29	MORSETTIERA TRASFORMATORE TENSIONE ANODICA	
FIGURA 30	BASAMENTO ALIMENTAZIONE RACK	
FIGURA 31	PANNELLO ALTA TENSIONE	
FIGURA 32	PIANO ELETTROMECCANICO (TETRODO)	
FIGURA 33	RESISTENZE DI SOFT-START E POLARIZZAZIONE VALVOLA	
FIGURA 34	SCHEDA PROTEZIONI VALVOLARI	
FIGURA 35	SCHEDA RELE' POTENZA	
FIGURA 36	SCHEDA RELE' SINTONIE	
FIGURA 37	SCHEDA INTERFACCIA TELEMETRIA	
FIGURA 38	SCHEDA MISURE CALIBRAZIONE	
FIGURA 39	CONNETTORE PER SONDA TERMICA	
FIGURA 40	CONNETTORE PER LA MISURA DI P.W.R.	
FIGURA 41	CONNETTORE PER I2 CBUS SCATOLA TELEMTRIA	
FIGURA 42	CONNETTORE PER PTXLCD	
FIGURA 43	CIRCUITO BASSA TENSIONE	76
FIGURA 44	CIRCUITO 380V	
FIGURA 45	CIRCUITO MISURE E ALLARMI	
FIGURA 46	SCHEMA ELETTRICO	79
	TABELLE	
TABELLA A	- SPECIFICHE ELETTRICHE	13
	SPECIFICHE MECCANICHE E AMBIENTALI	
TABELLA C -	RIFERIMENTO FREQUENZE	40
	- PARAMETRI DI SETTAGGIO CON ALIMENTATORE	
	PARAMETRI DI FUNZIONAMENTO A RIPOSO	
TABELLA F -	EQUIPAGGIAMENTO CONSIGLIATO PER I TEST	56
		4

I - ISTRUZIONI PRELIMINARI E INFORMAZIONI DI GARANZIA

Si prega di osservare le necessarie precauzioni di sicurezza quando si usa questa apparecchiatura. Questa macchina presenta al suo interno correnti pericolose e alte tensioni.

Questo manuale è stato scritto per dare una guida generale per coloro che hanno necessità di avere una conoscenza preliminare di questo tipo di macchina. Esso non intende fornire una guida completa di tutte le regole di sicurezza che dovrebbero essere osservate dal personale durante l'uso di questa o altre apparecchiature elettroniche.

R.V.R. non assume la responsabilità per lesioni o danni causati da procedure errate o da un uso improprio da parte di personale non addestrato o non qualificato all'uso di questa unità.

Si prega di osservare le norme locali e regole antincendio durante l'uso di questa macchina.

ATTENZIONE: disconnettere sempre l'alimentazione prima di aprire coperchi o di rimuovere qualsiasi parte di questa apparecchiatura. Usare appropriate procedure di messa a terra per scaricare i condensatori e i punti di alta tensione prima di qualsiasi manutenzione.

Qualsiasi danno all'apparecchiatura deve essere segnalato al corriere e scritto sulla ricevuta di spedizione. Qualsiasi differenza o danno scoperto dopo la consegna, dovrà essere riferito all'**R.V.R.** entro cinque (5) giorni dalla consegna.

R.V.R. estende al cliente utente finale tutte le garanzie originali di fabbricazione che sono trasferibili e tutti i reclami devono essere fatti direttamente all'**R.V.R.** secondo procedure prestabilite.

Tutte le garanzie di fabbricazione saranno trattenute dall'**R.V.R.** per assicurare un assistenza precisa e veloce dove possibile.

R.V.R. non sarà responsabile per qualsiasi danno di qualsiasi natura, a causa o in relazione all'uso del prodotto.

La garanzia **R.V.R.** non include:

- a. Spedizione della macchina all'**R.V.R**. per la riparazione
- **b**. Qualsiasi modifica o riparazione non autorizzata
- c. Danni incidentali/causati non dovuti a difetti della macchina
- **d**. Difetti nominali non incidentali
- **e**. Costi di spedizione o di assicurazione della macchina o sostituzione di parti o unità.

La garanzia entrerà in vigore dalla data di fattura per il periodo di garanzia di costruzione.

Per reclamare i propri diritti con questa garanzia:

- a. Contattare il rivenditore o il distributore dove avete acquistato la macchina. Descrivere il problema e chiedere se è in grado di fornirvi una facile soluzione. Rivenditori e distributori sono in grado di fornire tutte le informazioni relative ai problemi che possono presentarsi e normalmente possono riparare la macchina più velocemente di quello che potrebbe fare la casa costruttrice. Molto spesso errori di installazione vengono scoperti dai rivenditori.
- **b**. Se il vostro rivenditore non può aiutarvi, contattare l'**R.V.R**. in Bologna e spiegare il problema. Se viene stabilito di rispedire la macchina alla fabbrica, **l'R.V.R.** vi spedirà una regolare autorizzazione con tutte le necessarie istruzioni per la restituzione della merce.
- c. Quando avete ricevuto l'autorizzazione, potete restituire la macchina. Imballarla con molta attenzione per la spedizione, preferibilmente usando l'imballo originale e sigillare l'imballo perfettamente. Il cliente assume sempre il rischio di perdita (es., l'R.V.R. non è mai responsabile per danni o perdita), finchè l'imballo non raggiunge la sede dell'R.V.R.. Per questo motivo, vi consigliamo di assicurare la merce per il valore intero. La spedizione deve essere effettuata C.I.F. (PREPAID) all'indirizzo specificato dall'R.V.R. sull'autorizzazione.

NON RESTITUIRE LA MACCHINA SENZA LA NOSTRA AUTORIZZAZIONE IN QUANTO POTREBBE ESSERE RIFIUTATA.

Assicurarsi di allegare una diagnosi tecnica scritta dove sono elencati tutti i problemi riscontrati e una copia della vostra fattura originale che mostra la data di partenza della garanzia.

La sostituzione di parti in garanzia può essere richiesta al seguente indirizzo. Assicurarsi di allegare il modello della macchina e il numero di serie come pure la descrizione della parte e il suo numero di codice.

R.V.R. Elettronica S.p.a. - Broadcasting Equipment - Via del Fonditore, 2/2c Zona Roveri 40138 Bologna - Italy

L'**R.V.R**. si riserva il diritto di apportare modifiche al progetto e alle specifiche della macchina in questo manuale senza alcun preavviso.

II - ISTRUZIONI PER LA GARANZIA DELLA VALVOLA

GARANZIA LIMITATA AI PRODOTTI DELLA VARIAN

I prodotti della Varian sono garantiti per qualsiasi tipo di difetto non derivante da danni al materiale dovuti alla spedizione. La garanzia è basata sia sul tempo di acquisto che sul tempo di funzionamento del filamento. E' basata specialmente su: il tempo da quando il prodotto è stato spedito dalla Varian, il tempo da quando il rivenditore lo ha spedito al cliente e il tempo di funzionamento.

QUALSIASI COSA ACCADA PRIMA FA TERMINARE LA GARANZIA.

Le garanzie sono determinate dal codice mostrato nella scheda di acquisto.

	TEMPO DALLA SPEDIZIONE	TEMPO DALLA SPEDIZIONE	TEMPO DI FUNZIONAMENTO
Code	Dall'EIMAC	Al Cliente	Filamento
T	36 MESI	24 MESI	10.000 ORE
R	24 MESI	12 MESI	5.000 ORE
P	24 MESI	12 MESI	4.000 ORE
N	24 MESI	12 MESI	3.000 ORE
K	24 MESI	12 MESI	1.000 ORE
L	DURATA TESTATA DAL	LA FABBRICA INVECE DI	ALTRA GARNZIA
12	24 MESI	12 MESI	

L'ultima categoria è per prodotti hardware o accessori dove la garanzia è basata solo sul tempo trascorso. Il Costruttore (OEM) o un Distributore autorizzato Varian può tenere un qualsiasi prodotto nel suo magazzino per 12 mesi e alla fine il cliente avrà ancora una garanzia totale. Un esempio, la garanzia per il codice T è di 36 mesi dalla data di spedizione dalla EIMAC, o di 24 mesi dalla data di spedizione al cliente, o 10.000 ore di funzionamento del filamento, qualsiasi cosa accada prima. Un prodotto che presenta un difetto (purchè dovuto al materiale o allo spedizioniere) durante il primo 10% del periodo di garanzia sarà sostituito senza spese dalla Varian o il 100% del prezzo di acquisto sarà accreditato tramite un Distributore autorizzato Varian o tramite un OEM. Se il difetto si presenta durante il restante periodo 10-100% del tempo di garanzia sarà calcolato un aggiustamento proporzionale da cui risulterà il vostro credito. Questo può essere fatto tramite il costruttore originale (OEM) o un Distributore autorizzato Varian.

Il credito proporzionale è calcolato come segue:

Così per il Codice N (3000 ore) se il difetto si presenta dopo 600 ore e si è riscontrato che dipende da un difetto del materiale o da errore dello spedizioniere:

$$\frac{3000 - 600}{3000} = 80\%$$

Le valvole che devono essere restituite per richiesta di garanzia sono normalmente spedite ad un Distributore autorizzato Varian o ad un costruttore (OEM) da cui sono acquistate originariamente. Se si restituisce direttamente la valvola alla Varian, il Distributore autorizzato Varian o l'OEM da cui è stata acquistata dovrà redigere una relazione nel caso in cui ci siano speciali istruzioni. Tutti i prodotti restituiti per richiesta di garanzia devono essere spediti con una spedizione in porto franco e comprendente una copia completa del service report, una copia del quale è sempre inclusa con tutti i prodotti. Nessuna richiesta di garanzia sarà presa in considerazione senza tale scheda completamente compilata. Una copia della fattura originale, atto di vendita, o qualsiasi altro documento dovrà essere allegato con la scheda compilata del service report in modo da stabilire con precisione la data ed il prezzo di vendita. Gli imballi originali Varian e i materiali per l'imballaggio dovranno essere sempre usati per restituire i prodotti in garanzia. Danni dovuti al trasporto a causa di uno scarso imballaggio precluderanno qualsiasi tipo di garanzia in quanto normalmente il danno rende impossibile qualunque tipo di test o misura.

LE VALVOLE NON DOVRANNO MAI ESSERE SPEDITE VIA POSTA.

III - REGOLE DI SICUREZZA

ATTENZIONE!

Le correnti e le tensioni presenti in questo dispositivo sono pericolose, il personale deve osservare sempre le norme di sicurezza.

Questo manuale rappresenta una guida generale per il personale addestrato e qualificato che è consapevole dei pericoli inerenti al trattamento potenzialmente rischioso dei circuiti elettrici ed elettronici.

Esso non si propone di contenere una relazione completa di tutte le precauzioni di sicurezza che devono essere osservate dal personale che utilizza questo o altri dispositivi. L'installazione, il funzionamento, la manutenzione e l'impiego di questo dispositivo implica rischi sia per il personale che per il dispositivo stesso, il quale deve essere utilizzato solo da personale qualificato esercitando la dovuta attenzione.

<u>La R.V.R. ELETTRONICA S.p.a.</u> non sarà responsabile per lesioni o danni risultanti da procedure improprie o dall'uso di personale inesperto o non correttamente addestrato all'adempimento di tali mansioni.

Durante l'installazione e il funzionamento di questo dispositivo, devono essere osservate le regole antincendio e i codici di costruzione locali.

ATTENZIONE!

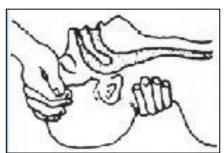
Disconnettere sempre l'alimentazione prima di aprire i coperchi, i pannelli o le protezioni. Usare sempre strumenti isolati prima dell'utilizzo. Non eseguire mai regolazioni interne, operazioni di manutenzione o di servizio quando si è soli o quando si è stanchi.

Non rimuovere cortocircuiti o blocchi con interruttori interbloccanti su coperchi d'accesso, chiusure, pannelli e protezioni.

Tenersi lontano dai circuiti sotto tensione, imparare a conoscere il dispositivo e non prendere rischi.

ATTENZIONE!

In caso di emergenza assicurarsi che l'alimentazione sia stata disconnessa.


TRATTAMENTO DEGLI SHOCK ELETTRICI

1) Se la vittima ha perso conoscenza seguire i principi di primo soccorso riportati nei punti A-B-C.

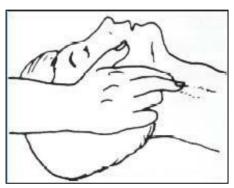
POSIZIONARE LA VITTIMA SDRAIATA SULLA SCHIENA SU UNA SUPERFICIE RIGIDA

A) VIE AEREE

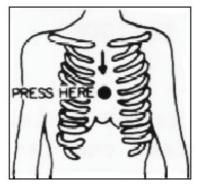
SE NON COSCIENTE, LA APRIRE LE VIE AEREE

SOLLEVARE IL COLLO SPINGERE INDIETRO LA FRONTE APRIRE LA **BOCCA SE NECESSARIO** CONTROLLARE LA **RESPIRAZIONE**

B) RESPIRAZIONE


SE NON RESPIRA, INIZIARE LA RESPIRAZIONE ARTIFICIALE

INCLINARE LA TESTA CHIUDERE LE NARICI FARE ADERIRE LA BOCCA A QUELLA DELLA VITTIMA PRATICARE 4 RESPIRAZIONI VELOCI RICORDARSI DI INIZIARE IMMEDIATAMENTE LA RESPIRAZIONE


C) CIRCOLAZIONE

IN ASSENZA DI BATTITO, INIZIARE IL MASSAGGIO **CARDIACO**

COMPRIMERE LO STERNO DA 1 1/2" A 2"

2 RESPIRAZIONI VELOCI.

APPROS. 60 SEC.: 2 SOCCORRITORI, 5 COMPRESSIONI,

1 RESPIRAZIONE.

N.B.: NON INTERROMPERE IL RITMO DI COMPRESSIONE QUANDO LA SECONDA PERSONA STA ESEGUENDO LA RESPIRAZIONE ARTIFICIALE.

Chiamare un medico il prima possibile.

- 2) Se la vittima è cosciente:
 - coprire la vittima con una coperta.
 - tranquillizzare la vittima.

c. slacciare gli abiti (sistemare la vittima in posizione coricata).

PRIMO-SOCCORSO

Il personale impegnato nell'installazione, nel funzionamento, nella manutenzione o assistenza di questo dispositivo ha la necessità di avere familiarità con la teoria e le pratiche di primo soccorso.

La relazione seguente non rappresenta una guida completa delle procedure di primo soccorso, ma è solo un riassunto che deve essere usato come riferimento.

E' compito di tutto il personale che usa questo dispositivo essere pronti a prestare un adeguato soccorso e perciò prevenire evitabili decessi.

TRATTAMENTO DELLE USTIONI ELETTRICHE

- 1) Vaste ustioni e tagli della pelle.
 - a. Coprire l'area con un lenzuolo o un panno pulito.
 - b. Non rompere le vesciche, rimuovere il tessuto, rimuovere le particelle di vestito che si sono attaccate alla pelle, applicare una pomata adatta.
 - c. Trattare la vittima come richiede il tipo di shock.
 - d. Trasportare la vittima in ospedale il più velocemente possibile.
 - e. Se braccia o gambe sono state colpite, tenerle sollevate.

NOTA BENE

Se l'aiuto medico non è disponibile prima di un'ora e la vittima è cosciente e non ha sforzi di vomito, somministrargli una soluzione liquida di sale e soda: 1 cucchiaino pieno di sale e mezzo cucchiaino di bicarbonato di sodio ogni 250 ml d'acqua (ne' caldo ne' freddo).

Permettere alla vittima di sorseggiare lentamente per circa 4 volte (1/2 bicchiere) per un periodo di 15 minuti.

Interrompere se si verificano sforzi di vomito. (Non dare alcool).

- 2) Ustioni meno gravi (1° e 2° grado).
 - a. Applicare compresse di garza fredde (non ghiacciate) usando un panno il più possibile pulito.
 - b. Non rompere le vesciche, rimuovere il tessuto, rimuovere le particelle di vestito che si sono attaccate alla pelle, applicare una pomata adatta.
 - c. Mettere se necessario abiti puliti e asciutti.
 - d. Trattare la vittima come richiede il tipo di shock.
 - e. Trasportare la vittima all'ospedale il più velocemente possibile. Se braccia o gambe sono state colpite, tenerle sollevate.

Data redazione: 25/07/03	R.V.R. Elettronica S.r.I. (BO)	VJ10000-TE - R.F. Tube Amplifier
		12

CAPITOLO 1

DESCRIZIONE GENERALE DEL VJ10000-TE

1.1) DESCRIZIONE MECCANICA

Il VJ10000 è allocato in un rack 19", 40U di altezza, di cui 7 sono libere che possono essere usate per allocarvi un eccitatore, un ricevitore e un'altra apparecchiatura.

Due strumenti analogici sono situati sul pannello frontale a cerniera (FIGURA 1) insieme con tutti i controlli ed interruttori. Il pannello posteriore (FIGURA 2) non ha connettori ma solo l'ingresso per l'aria per la ventola di raffreddamento, completo con filtro dell'aria, e un'apertura per i cavi di alimentazione e dei drivers esterni. Un camino è posto sulla parte superiore del rack (FIGURA 3) che permette di espellere l'aria calda. Il connettore d'antenna è anch'esso posizionato nella parte superiore. Il tipo di connettore per antenna è di 1" 5/8 o opzionale 3" 1/8.

1.2) DESCRIZIONE ELETTRICA

Il VJ10000 è un amplificatore a valvole, operante nel range di frequenza 87.5 - 108 MHz. Questo amplificatore è in grado di operare una potenza di uscita superiore ai 10KW con una potenza di pilotaggio di circa 500 W. L'amplificatore presenta accordi di placca, carico e ingresso motorizzati, e in grado di coprire l'intera banda di frequenza.

Il VJ10000 è stato progettato per utilizzare una tensione di alimentazione trifase (Monofase su richiesta).

1.3) SPECIFICHE

Si prega di far riferimento alla Tabella A per le specifiche elettriche e alla Tabella B per le specifiche meccaniche e ambientali.

TABELLA A - SPECIFICHE ELETTRICHE

Alimentazione	Trifase:	220-240V ±15%, 50-60 Hz 380-415V ±15%, 50-60 Hz
	Monofase:	$220-240V \pm 15\%$, 50-60 Hz
Range di Frequenza	87.5 - 108 MHz	(altre a richiesta)
Potenza d'uscita		11000 W max, 10000 W tipici
Impedenza d'uscita RF		Connettore EIA 1+5/8" 50 Ohm
Impedenza d'ingresso RF		Connettore "N" 50 Ohm
Potenza di pilotaggio RF		300 W max
Valvola		EIMAC 4CX7500
Raffredamento		Ventilazione forzata
Soppressione componenti armoniche e spurie	Supe e CC	eriore o coincidente con le norme FCC
Consumo di potenza		circa 18-20 KW

TABELLA B - SPECIFICHE MECCANICHE E AMBIENTALI

Dimensioni Rack 40 Unità 565 mm (22.24") W 850 mm (33.46") D

1894 mm (74.56") H

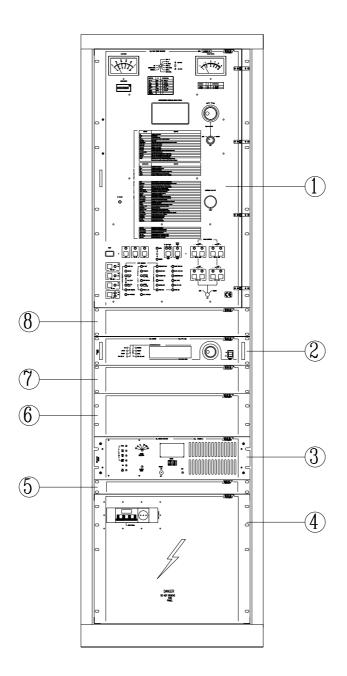
Dimensioni Pannello 483 mm (19") W

1779 mm (71.11") H

Peso 470 Kg (1034 Lbs)

Temperatura di lavoro da -10° a +50°C

Umidità max 90%, senza condensa


CAPITOLO 2

DESCRIZIONE ELETTRICA

2.1) INTRODUZIONE

Questo capitolo descrive in modo accurato, la componentistica del VJ10000-TE. Per facilitare la comprensione della macchina è stata suddivisa in moduli, ciascuno dei quali è descritto completamente di seguito.

FIGURA 1 VISTA FRONTALE

RIF.

- 1)
- 2)
- 3)
- 4)
- 5)
- 6)
- 7)

8)

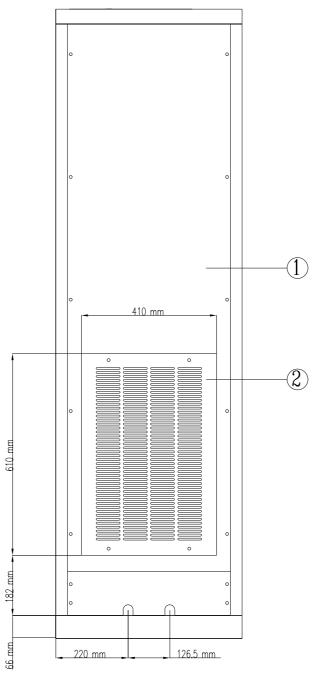
DESCRIZIONE

Pannello Protezioni (18U)

Eccitatore (2U)

Pilota (3H)

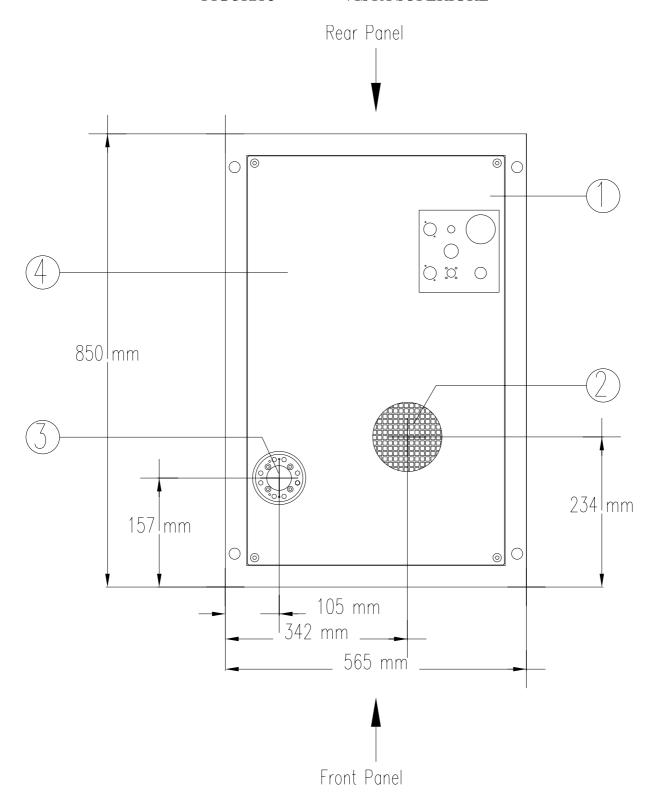
Pannello Alta Tensione (9H)


Panello Libero (1U)

Pannello Libero (3U)

Pannello Libero (2U)

Pannello Libero (2U)


FIGURA 2 VISTA POSTERIORE

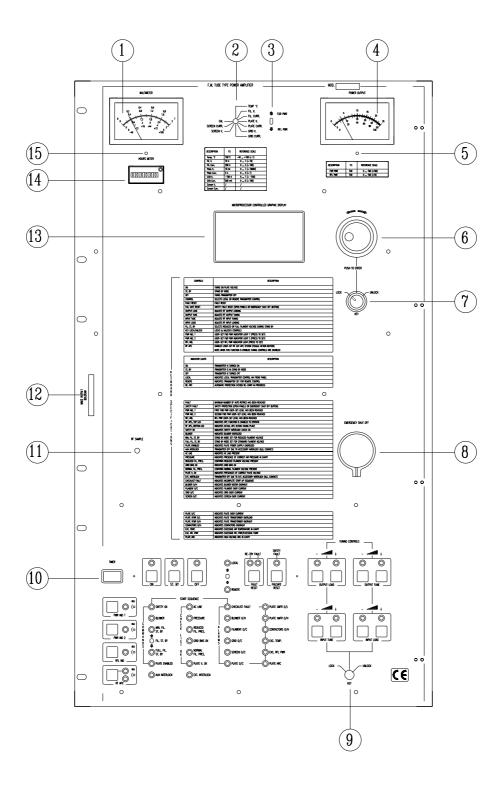
RIF. DESCRIZIONE

1) Pannello Posteriore2) Filtro d'Aspirazione

FIGURA 3 VISTA SUPERIORE

RIF.

DESCRIZIONE


- 1)
- 2)
- 3)

RF Ouput connector (1+5/8")

Camino Uscita Aria (100 mm diametro)

Pannello Superiore

FIGURA 4 PANNELLO FRONTALE A CERNIERA CON TELEMETRIA

DESCRIZIONE PANNELLO FRONTALE A CERNIERA

DESCRIZIONE

1) **MULTIMETRO**: Strumento analogico per la misura della temperatura,

tensione e corrente di filamento, tensione e corrente

anodica e tensione e corrente di griglia.

2) **SELLETTORE TENSIONI**: Selettore per visualizzazione misura desiderata.

3) **INTERRUTTORE**: Interruttore misura potenza diretta e riflessa.

4) **STRUMENTO POTENZA**: Strumento analogico per la misura della potenza diretta

e riflessa.

5) **AZZERAMENTO**: Azzeramento meccanico dello strumento analogico per

la misura della potenza diretta e riflessa.

6) **ENCODER**: Encoder per telemetria (opzionale).

RIF.

7) **INTERRUTTORE**: Interruttore a chiave per abilitazione encoder telemetria

(opzionale).

8) **PULSANTE EMMERGENZA** Pulsante d'emergenza per l'arresto della macchina.

9) **INTERRUTTORE**: Interruttore a chiave per abilitare i motorini di sintonia.

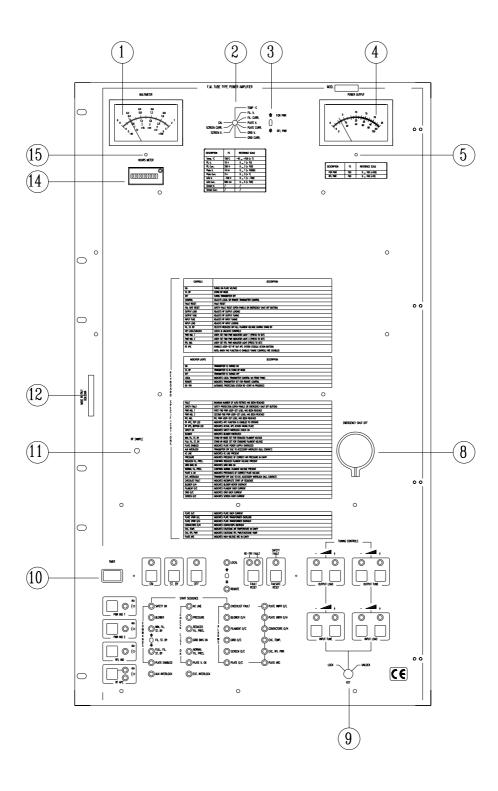
10) **DISPLAY**: Display per la visualizzazione del tempo di

preriscaldamento del filamento.

11) **R.F. SAMPLE**: Connettore per prelievo segnale R.F.

12) MANIGLIA: Maniglia per apertura pannello a cerniera

13) **DISPLAY**: Display per la visualizzazione dei parametri della


macchina e della telemetria (opzionale).

14) **CONTAORE**: Indicatore delle ore difunzionamento della macchina.

15) **AZZERAMENTO**: Azzeramento meccanico dello strumento analogico per

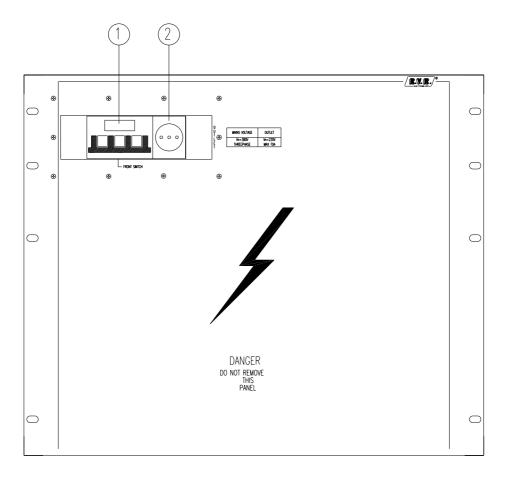
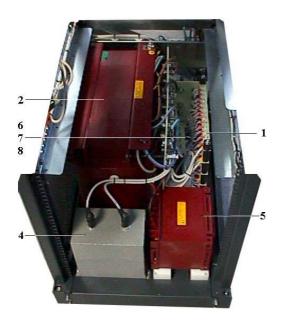
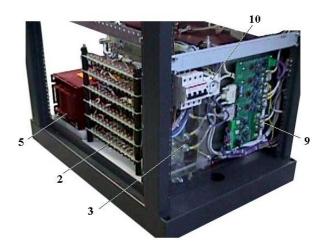

multimetro.

FIGURA 5 PANNELLO FRONTALE A CERNIERA SENZA TELEMETRIA

FIGURA 6

PANNELLO ALTA TENSIONE




RIF.

DESCRIZIONE

1) 2) Sezionatore quadripolare di protezione Presa di corrente per servizi.

FIGURA 7 VISTA SEZIONE ALIMENTATORE P1

RIF.

1)

2)

- 3)
- 4)
- 5)
- 6)7)
- 8)
- 9)
- 10)

DESCRIZIONE

Ponte di diodi raddrizzatore tensione di placca.

Trasformatore di alimentazione tensione anodica.

Morsettiera trasformatore Tensione Anodica.

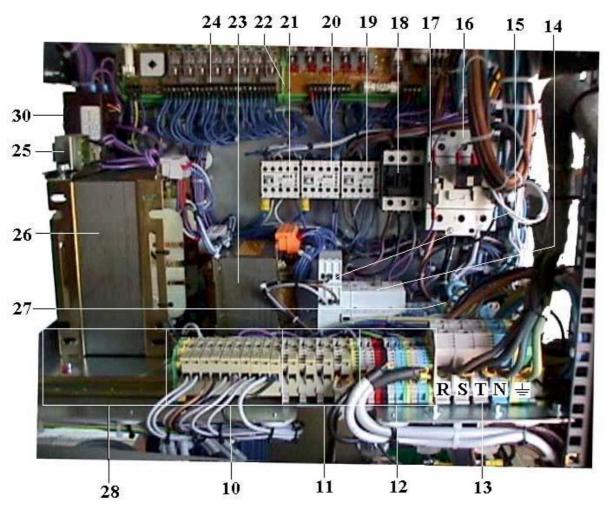
Condensatore di filtraggio tensione anodica.

Induttanza.

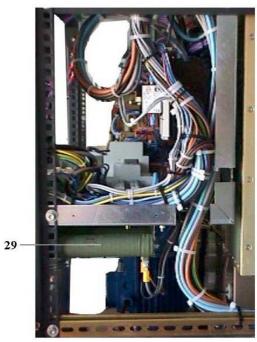
Resistenza di scarica condensatore Alta Tensione.

Resistenza Anti Flash su Tensione di placca.

Resistenza di scarica condensatore Alta Tensione.


Scheda controllo misure

Presa di servizio.


DESCRIZIONE PIANO ALIMENTATORE P2

RIF.	DESCRIZIONE
1)	Resistenza . Grid bletter
2)	Resistenza short circuit current limiter.
3)	Scheda alimentazione Vg1 e Vg2.
4)	Morsettiera di alimentazione griglie.
5)	Condensatori di livellamento tensione griglie.
6)	Trasformatore Vg1.
7)	Trasformatore Vg2.
8)	Resistenze screen bledder.
9)	Scheda alimentazione Vg1 e Vg2.
10)	Morsetto fusibili di servizio.
11)	Morsettiera interlock ext.
12)	Morsettiera alimentazione piloti.
13)	Ingresso linea TRF.
14)	Salvamotore ventola.
15)	Controllo presenza TRF.
16)	Teleruttore HT2.
17)	Contatto aux HT2. alim piloti.
18)	Teleruttore HT1
19)	Teleruttore ventola.
20)	Teleruttore filamento 1.
21)	Teleruttore filamento 2.
22)	Scheda relé di potenza.
23)	Trasformatore di servizio.
24)	Scheda relé sintonia.
25)	Trasformatore lettura V fil.
26)	Trasformatore filamento.
27)	Morsettiera alimentazione ventola e stabilizzatore.
28)	Scheda telemetria elettromeccanica (OPTIONAL).
29)	Resistenza soft-start HT.
30)	Controllo Amperometrico lettura I fil.

FIGURA 8 VISTA PIANO ALIMENTATORE P2

FIGURA 9 VISTA FRONTALE CAMERA R.F.

RIF.

- 1)
- 2)
- 3)
- 4)
- 5) 6)
- 7) 8)

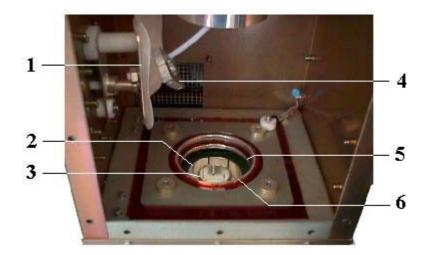
DESCRIZIONE

Barre filettate.

Tubo di placca.

Piano scorrevole con finger.

Anello di placca.


Fascetta.

Piattello load.

Ingresso aria ventola.

Zoccolo valvola.

FIGURA 10 VISTA DELLO ZOCCOLO CAMERA RF

RIF.

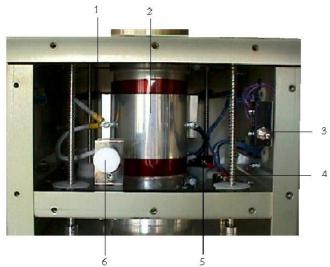
1)

- 2)
- 3)
- 4)
- 5)
- 6)

DESCRIZIONE

Condensatore load.

Zoccolo di contatto filamento.


Zoccolo di contatto filamento.

Morsetto per catodo valvola.

Anello di griglia 1.

Anello di griglia 2.

FIGURA 11 VISTA DEL MECCANISMO MOTORIZZATO DELLA SINTONIA

RIF.

- 1)
- 2)
- 3)
- 4)
- 4)
- 5)
- 5)
- 6)

DESCRIZIONE

Cavo alta tensione.

Isolante su tubo di placca.

Micro di protezione cavità.

Micro per finecorsa superiore del piano mobile.


Micro di protezione cavità.

Scaricatore.

Tubo di placca.

Micro per finecorsa inferiore del piano mobile.

FIGURA 12 VISTA SUPERIORE CAMERA RF

RIF.

- 1)
- 2)
- 3)
- 4)
- 5)
- 6)
- 7)

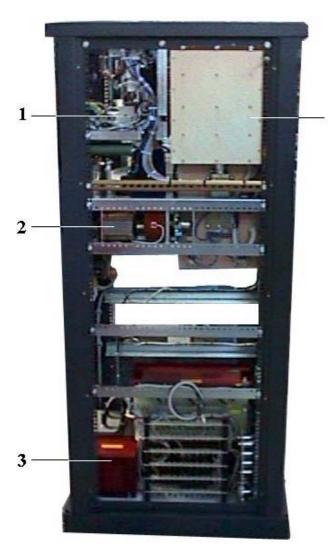
DESCRIZIONE

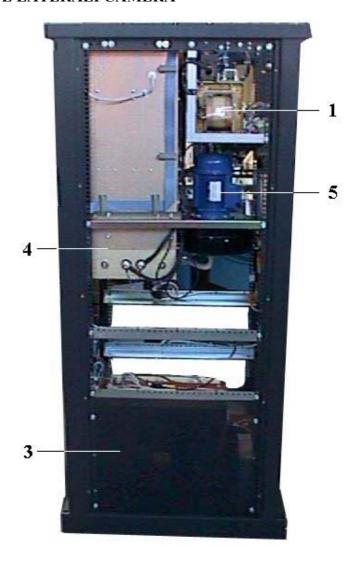
Flangia 1"+5/8 (3" 1/8 opzionale).

Accoppiatore direzionale.

Filtro passa basso.

Camino uscita aria (diametro 180 mm).


Sonda di temperatura.


Wattmetro.

Cavità RF.

FIGURA 13

VISTE LATERALI CAMERA

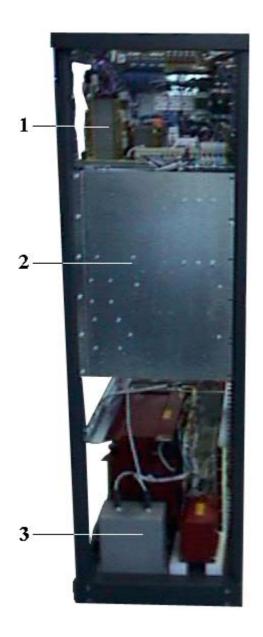
RIF.

- 1)
- 2)
- 3)
- 4)

5)

DESCRIZIONE

Piano elettromeccanico.


Variatore di tensione.

Piano di alimentazione.

Camera RF.

Ventola raffreddamento cavità.

FIGURA 14 VISTA POSTERIORE

RIF.

- 1)
- 2)

3)

DESCRIZIONE

Piano elettromeccanico 1. Piano elettromeccanico 2. Piano alimentazione. Data redazione: 25/07/03 R.V.R. Elettronica S.r.l. (BO) VJ10000-TE - R.F. Tube Amplifier

CAPITOLO 3

INSTALLAZIONE

3.1 INTRODUZIONE

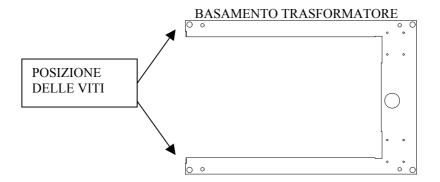
Questo capitolo contiene le informazioni necessarie per l'installazione e i controlli preliminari dell'amplificatore VJ10000.

3.2 DISIMBALLAGGIO

Rimuovere l'apparecchiatura dal suo imballaggio. Prima di tutto assicurarsi che l'unità non abbia subito danni durante il trasporto e che tutti i controlli posti sul pannello frontale siano "operativi".

Una volta tolto il mobile Rack dalla cassa o dal pluriboll ed il carrello trasformatore dal proprio imballaggio, procedere in questo modo:

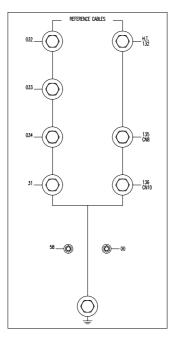
Aprire i coperchi laterali, quello posteriore ed anche il pannello da 9 unità sul fondo del mobile rack anteriore.



Come attrezzi sono necessari un cacciavite con testa a croce, una chiave a tubo da 7mm ed una chiave a brugola per viti M6, una chiave a brugola per viti M8 una chiave a tubo da 10 mm.

Assicurarsi di avere un contenitore dove mettere tutte le viti in modo da non perderle, in quanto se non rimontate correttamente, ogni pannello dispone di un interruttore corrispondente al Safety, è possibile che con le vibrazioni si interrompa il contatto di questi interruttori generando un allarme alla macchina.

Una volta aperti questi pannelli controllare che nel trasporto non si siano allentate delle viti o che non vi siano componenti fuoriusciti dagli appositi sostegni in quanto con urti o torsioni possono sganciarsi dagli appositi supporti. In caso di difformità ripristinare le condizioni originali.


Una volta fatto questo inserire il carrello del trasformatore all'interno del rack posteriore, assicurarsi di avere tolto prima le quattro viti M6 con la chiave a brugola.

Una volta inserito il carrello all'interno, passare sulla parte anteriore e smontare il plexiglass di protezione e allacciare i fili alla morsettiera di protezione e allacciare i fili della morsettiera (vedi disegno) con:

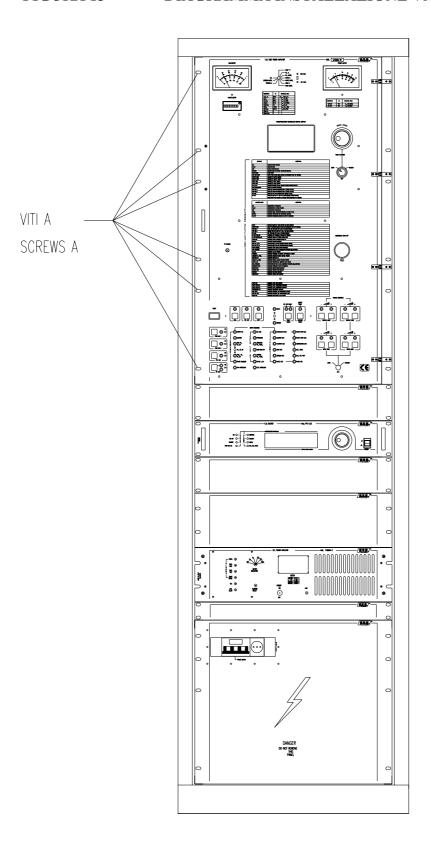
n° 1 chiave per brugole M8

n° 1 chiave a tubo per viti M6

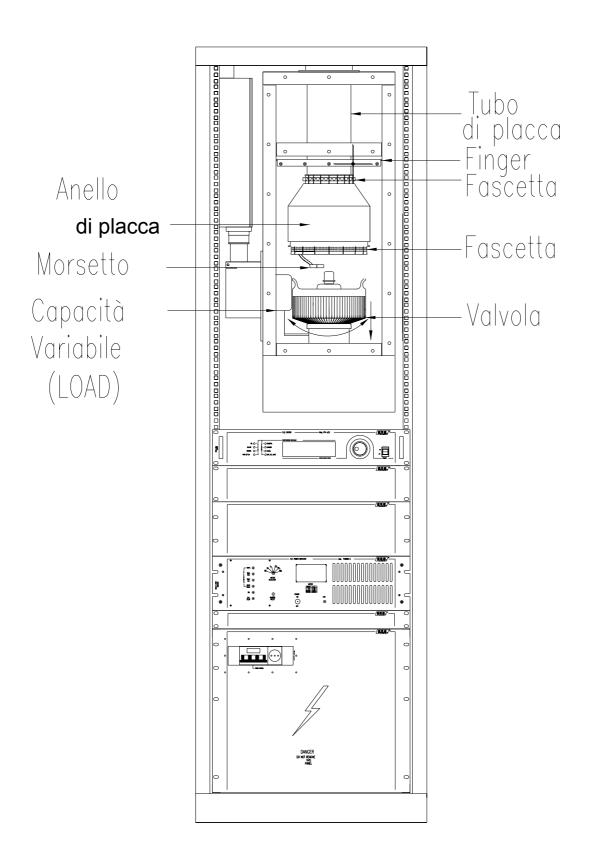
MORSETTIERA DI ALIMENTAZIONE

Una volta certi che i fili siano collegati correttamente, rimontare il plexiglas di protezione e il pannello da 9 unità anteriore, richiudere successivamente gli altri pannelli laterali e procedere con l'installazione della valvola.

Il pannello posteriore è consigliabile chiuderlo solamente prima dell'accensione finale.


3.3 MONTAGGIO DELLA VALVOLA

Per montare la valvola occorre seguire la seguente procedura:


- 1) Connettere il cavo di alimentazione nell'apposita morsettiera rispettando le fasi e il neutro. La tensione di alimentazione dovrà essere quella a cui è stata settata la macchina (vedi scheda collaudo). Connettere a un buon impianto di terra. Connettere un carico fittizio di potenza adeguata, o l'antenna stessa, all'uscita dell'amplificatore.
- 2) Aprire il pannello frontale con cerniera situato sulla sezione a radiofrequenza, svitando le viti A (FIGURA 15) per poi rimuovere il coperchio frontale della cavità.
- 3) Accendere la macchina mediante automatico e/o sezionatore, tenendo premendo il pulsante OFF.
- 4) Ora, abilitare i pulsanti di sintonia con l'interruttore a chiave e usare il pulsante OUPUT TUNE per alzare il piano con i fingers fino al suo limite superiore, ricordarsi che se il pulsante RF APC è abilitato i motorini di regolazione sintonia non funzionano. Ora togliere nuovamente la tensione di alimentazione.
- Ora allentare la fascetta che tiene fissato l'anello di placca e portarlo fino al suo limite superiore(FIGURA 16).

 Innestare quindi la valvola, e contemporaneamente ruotarla fino a quando l'anello di griglia non aderisce perfettamente all'anello dello zoccolo di fissaggio sulla cavità. Per essere certi del corretto inserimento della valvola occorre che il contatto di griglia 1, quello più vicino alla placca, sia totalmente inserito nei fingers montati sul piano dello zoccolo
- **N.B.** Non toccare a mani nude la ceramica della valvola per evitare di lasciare tracce di unto; nel caso pulire tale parte con trielina o con acetone
- 6) Una volta innestata la valvola, fissare il blocchetto per portare l'Alta Tensione sul cappuccio della valvola (FIGURA 17). E' molto importante serrare correttamente il blocchetto (usando una chiave a brugola per vite M5), in modo che non possa uscire dalla valvola.
- 7) Ora abbassare l'anello di placca in modo che vada ad abbracciare la valvola come rappresentato nella (FIGURA 20), per poi serrarlo con le apposite fascette, sia sulla valvola stessa che sul tubo di placca.
- 8) A questo punto ridare alimentazione alla macchina e tenendo il pulsante OFF premuto portare con il pulsante OUPUT TUNE l'altezza del piano sintonia (FIGURA 22) alla misura corrispondente alla frequenza desiderata in modo da avere una presintonia in frequenza.
- 9) Una volta controllato che tutte queste operazioni siano state eseguite correttamente chiudere il pannello assicurandosi di non avere lasciato all'interno della cavità utensili o bulloni.

FIGURA 15 DIAGRAMMA INSTALLAZIONE VALVOLA N°1

FIGURA 16 DIAGRAMMA INSTALLAZIONE VALVOLA N°2

FIGURA 17 VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA N°2

RIF.

1) 2)

3)

4)

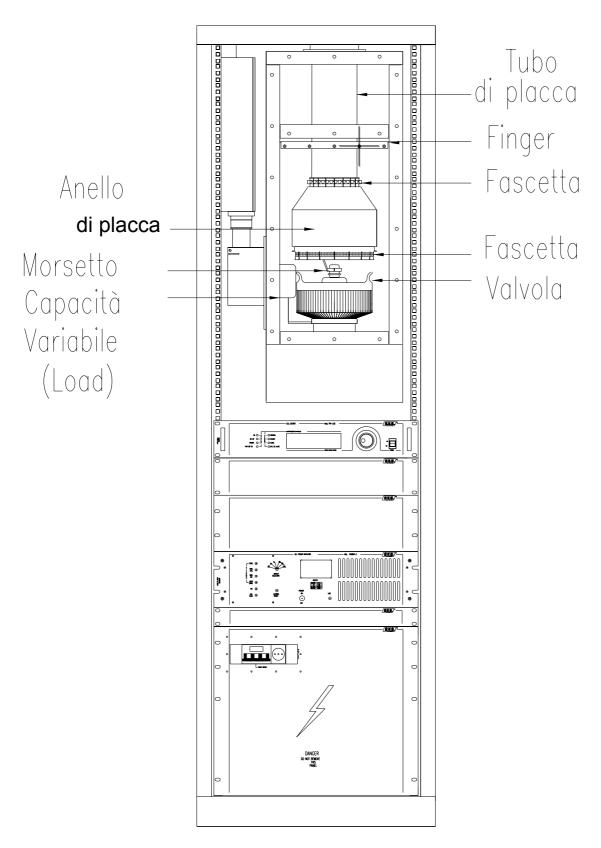
5)

6)

DESCRIZIONE

Anello di placca.

Fascetta.


Morsetto.

Valvola 4CX7500.

Zoccolo per valvola.

Piattello load.

FIGURA 18 DIAGRAMMA INSTALLAZIONE VALVOLA N°3

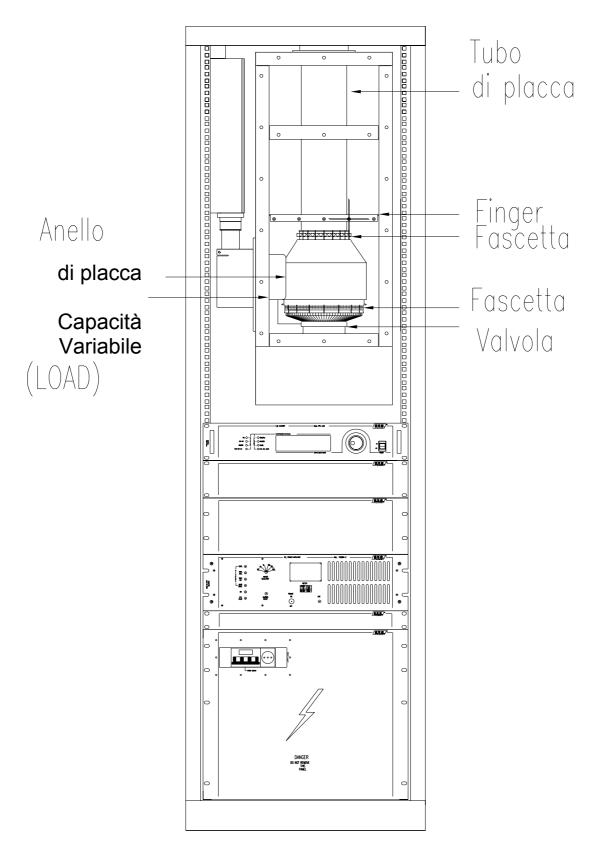
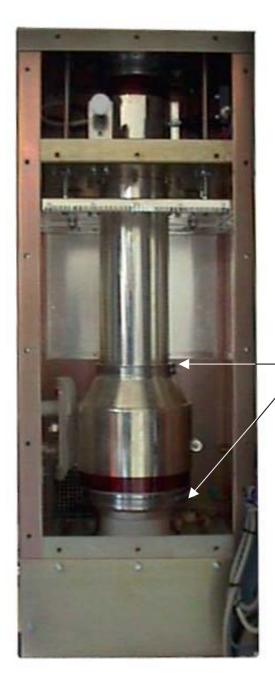


FIGURA 19 VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA N°3



Serrare il morsetto

FIGURA 20 DIAGRAMMA INSTALLAZIONE VALVOLA N°4

FIGURA 21 VISTA DI RIFERIMENTO INSTALLAZIONE VALVOLA Nº4

Abbassare l'anello di placca e successivamente serrare le fascette.

Movimentando il piano di sintonia tramite i pulsanti posti sul pannello frontale è possibile sintonizzare precedentemente all'aggiustamento fine dei valori di ouput la macchina. Fare riferimento ai valori sotto indicati per stabilire quale debba essere la distanza da applicare tra il piano scorrevole presente nella camera R.F. e il top di chiusura della cavità.

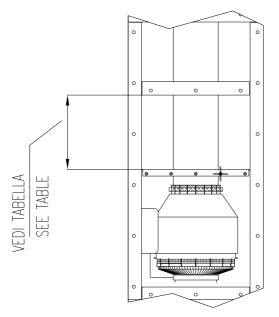


FIGURA 22 REGOLAZIONE FREQUENZA

Altezza Cm	Frequenza
9.5	88
10.5	89
11.5	90
12.5	91
13.5	92
14.5	93
15.5	94
16.5	95
17.5	96
18.5	97
19.5	98
20.5	99
21.5	100
22.5	101
23.5	102
24.5	103
25.5	104
26.5	105
27.5	106
28.5	107
29.5	108

TABELLA C - RIFERIMENTO FREQUENZE

Data redazione: 25/07/03 R.V.R. Elettronica S.r.l. (BO) VJ10000-TE - R.F. Tube Amplifier

3.4 MESSA IN FUNZIONE DELL'APPARATO

Per eseguire la messa in funzione dell'amplificatore VJ10000 occorre eseguire le seguenti operazioni:

- 1) La macchina è prevista per una alimentazione di 380 Vac (altre a richiesta), 3 fasi più il neutro. E' molto importante collegare il neutro sul morsetto con la scritta N (colore azzurro, vedi FIGURA 8) mentre per il verso delle fasi rispettare la sequenza R,S,T in modo che il led MAINS sia acceso, poiché la ventola è di tipo trifase in ogni caso assicurarsi del giusto senso di rotazione della ventola. Per l'allacciamento dei piloti utilizzare gli appositi morsetti ausiliari; accertarsi di collegarli ai morsetti destinati ai driver per evitare danni irreparabili alla valvola ed al finale. Dopo aver eseguito il montaggio della valvola come mostrato nel paragrafo precedente, connettere nuovamente la tensione di rete assicurandosi che tutti pannelli siano chiusi altrimenti la macchina risulta essere in protezione di Safety e non riesce a dare il consenso per continuare.
- 2) Settare al minimo la potenza dell'eccitatore e posizionare su ST.BY.
- Posizionare l'interruttore ON-OFF del pilota su OFF. Alimentare l'apparato tramite l'interruttore pricipale e attendere il tempo di riscaldamento. Il numero sul display indica il tempo di relativo di riscaldamento. Tale tempo può essere selezionato tra quattro valori tramite dei jumpers interni alla scheda protezioni nei modi descritti (vedi specifiche logica protezione per una migliore spiegazione).

NOTA: Prestare attenzione che i micro interlock non siano intervenuti, altrimenti l'equipaggiamento andrà in stato di Stop.

- 4) Controllare con il multimetro che il filamento assorba una corrente di circa 160 A.
- Ora, usando il multimetro a bordo macchina, verificare che la tensione di filamento sia $7V \pm 0.37$ V; se il filamento ha seguito la sequenza corretta a questo punto parte il Timer per il preriscaldamento della valvola prima di passare in anodica.

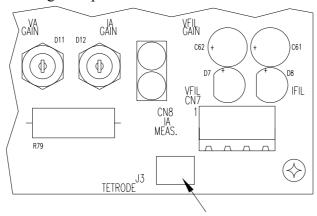
Se questo non avviene seguire le istruzioni a pag. 40 per verificare la mancanza di segnali sulla scheda misure.

Finito di contare il Timer si mette il pulsante in ON e deve partire il teletuttore HT1 e HT2 se partendo il teleruttore HT1 non si accende il led VA significa che vi è un corto circuito sull'alta tensione. Controllare di avere correttamente installato la valvola o la connessione sulla morsettiera del carrello del trasformatore. Una volta partiti i teleruttori HT1 e HT2 e la valvola è stata montata correttamente ci deve essere senza pilotaggio una corrente anodica di 400-600 mA (dipende dalla valvola). Questo significa che la valvola è stata montata correttamente e che la macchina è pronta per andare in potenza.

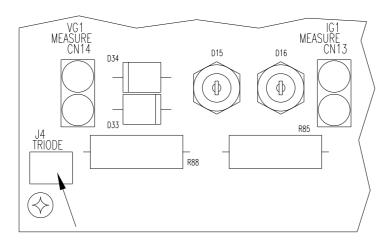
- 6) Alimentare l'eccitatore e una volta avvenuto l'aggancio, aumentare la potenza fino a circa 20-25 W.
- 7) Ora, tramite i comandi di sintonia INPUT TUNE e INPUT LOAD per ottenere il minimo SWR leggibile sullo strumento PWR dell'eccitatore; contemporaneamente si dovrà avere un aumento della corrente di placca.
- 8) Tarare il comando OUPUT TUNE per ottenere la massima potenza d'uscita ed effettuare la medesima operazione per il comando OUPUT LOAD.

- 9) Incrementare la potenza di pilotaggio e quindi, effettuare una nuova taratura tramite i comandi OUPUT TUNE e OUPUT LOAD fino al massimo di potenza fornibile dall'eccitatore. Con solo l'eccitatore PTX30UHT si dovrebbe raggiungere una potenza di 600-700 W in uscita il triodo 4CX7500.
- 10) Diminuire al minimo la potenza dell'eccitatore e connettere in serie all'eccitatore il driver.
- 11) Ripetere l'accensione dell'eccitatore e ripetere nuovamente la operazioni di sintonia OUPUT TUNE e OUPUT LOAD per il massimo della potenza in uscita, aumentando gradualmente la potenza in ingresso; nel caso aumentando la potenza di pilotaggio aumentasse l'SWR sull'ingresso del VJ10000 ritoccare la sintonia dell'ingresso, tramite INPUT LOAD e INPUT TUNE per il minimo SWR.
- 12) Ritoccare ora, il livello di pilotaggio e le sintonie OUPUT LOAD e OUPUT TUNE per avere i 10KW in uscita. Per tutti gli altri parametri fare riferimento alla tabella di collaudo allegata alla macchina, tenendo presente che i livelli massimi consentiti sono:

IA = 2.5 A Ig1 = -50 mA VF = 7 VAC Ig2 = 100 mA If = 110 A


CAPITOLO 4

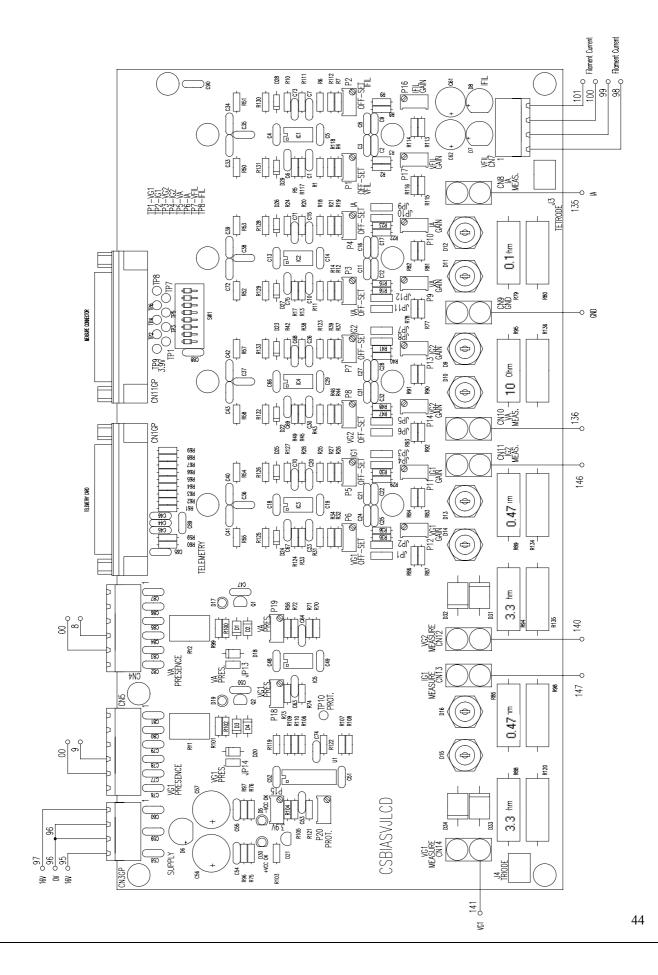
CALIBRAZIONE SCHEDA MISURE VALVOLARE


4.1) AVVERTENZE

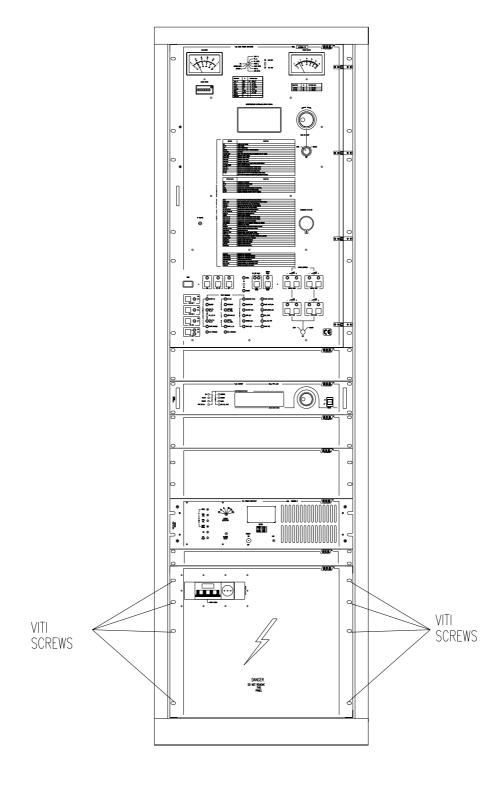
Attenzione, questa calibrazione viene inizialmente effettuata sul finale già in fase di collaudo, soltanto in caso di sostituzione della scheda, dopo aver accertato che sia proprio questa la causa di anomalie della macchina, bisogna procedere alla calibrazione della medesima secondo quanto descritto di seguito.

Prima di procedere alla calibrazione, controllare sullo stampato se il J3 è in corto, se così la scheda misure è configurata per essere utilizzata su un Tetrodo.

Se il corto è su j4 la scheda è configurata per essere utilizzata su un Triodo.



4.2) INTRODUZIONE


Per calibrare la scheda misure per gli amplificatori valvolari, situata a fianco dell'interruttore automatico principale dietro al pannello da 9 unità "Alta Tensione" (FIGURA 1), bisogna avere a disposizione:

- -n° 1 alimentatore 0-20V, 0-10A regolabile sia in tensione che in corrente.
- -n° 1 multimetro.
- -n° 1 amperometro in corrente continua.

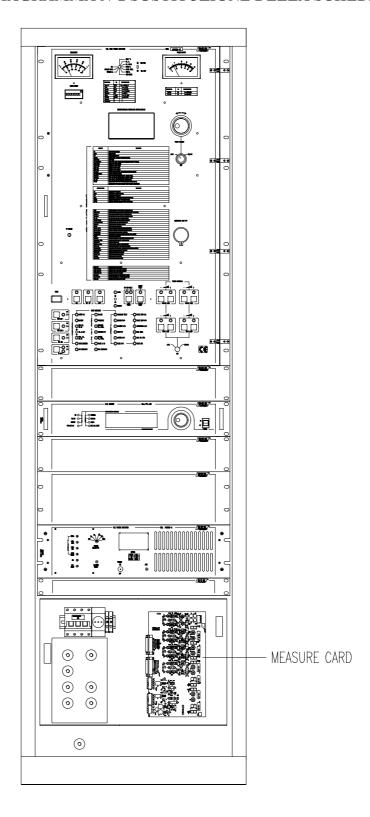

FIGURA 23 SCHEDA MISURE

FIGURA 24 DIAGRAMMA N°1 SOSTITUZIONE DELLA SCHEDA MISURE

FIGURA 25 DIAGRAMMA N°2 SOSTITUZIONE DELLA SCHEDA MISURE

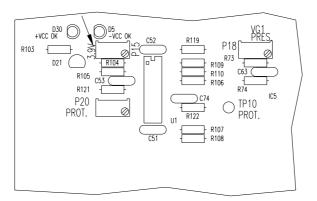
Prima di procedere controllare i valori delle resistenze di prelievo in base al tipo di amplificatore che si vuole utilizzare (in questo caso il tipo di finale è un VJ10000-TE che utilizza la valvola 4CX7500, vedi TABELLA D, per i valori delle resistenze vedi FIGURA 38).

Premesso che l'intervento delle protezioni sulla macchina intervengano a 3.9 Volt, bisogna fare in modo che alla massima tensione o corrente sopportata dalla valvola corrisponda una tensione di 3.9V, in modo che intervenga la protezione.

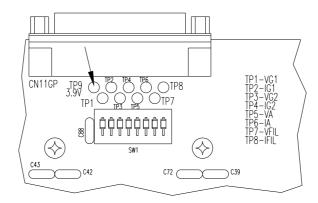
Esempio:

Valore di IA per un VJ10000-TE trifase con valvola 4CX7500.

La IA max viene calibrata a 2,5A con corrispondenza a 3.9V sull'uscita del Test Point TP6. In questo modo se la corrente supera il valore di 2,5A la protezione interviene.

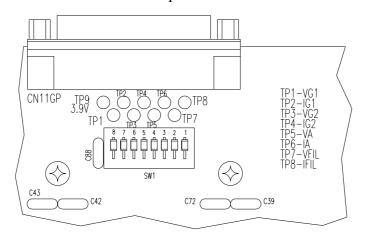

Nel manuale vi è una tabella con tutte le tensioni in ingresso e uscita della scheda.

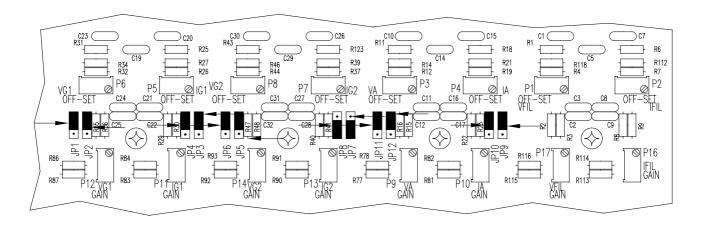
IA = 2.5 A	Ig1 = -50 mA
VF = 7 VAC	Ig2 = 100 mA
$ROS \circ RFL = 1000 W$	If $= 110 \text{ A}$


4.3) PROCEDURE DI TARATURA DELLA SCHEDA MISURE

Procedura di taratura della scheda alla prima accensione della macchina in caso di avvenuta sostituzione.

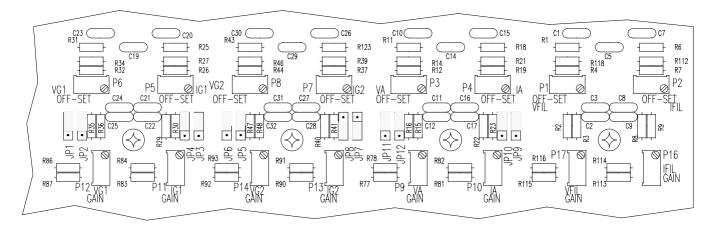
La prima operazione da effettuare, è quella di calibrare la tensione di riferimento della scheda (3.9V), utilizzando il trimmer P15.


Per misurarlo con il multimetro mettere un puntale a massa (negativo) e il puntale positivo sul Test Point TP9.

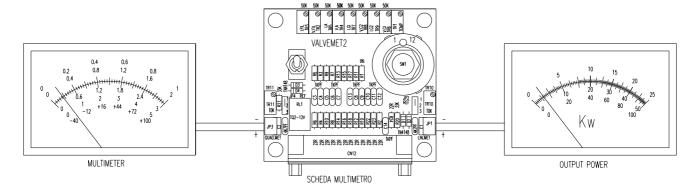

A questo punto bisogna portare il valore di tensione il più possibile vicino allo zero con i trimmer:

P1 per VF
P2 per IF
P3 per VA
P4 per IA
P5 per IG1
P7 per IG2
P8 per VG1
P8 per VG2
P8 p

Per vedere i valori di tensione usare sempre il multimetro con il puntale negativo verso massa e il positivo sul Test Point corrispondente al valore che si vuole calibrare.



A causa dei vari tipi di valvole su cui vengono applicate queste schede si può verificare che, le tensioni che si sono misurate, possono essere sia positive che negative; ma all'uscita dei Test Point si ha bisogno sempre di una tensione positiva.


Per ottenere questo bisogna intervenire spostando dei Jumper sulla scheda a coppie di due alla volta in base alla misura che risulta negativa

Per comodità viene fornita la posizione dei Jumper per la valvola 4CX7500 installata sul VJ10000 TE.

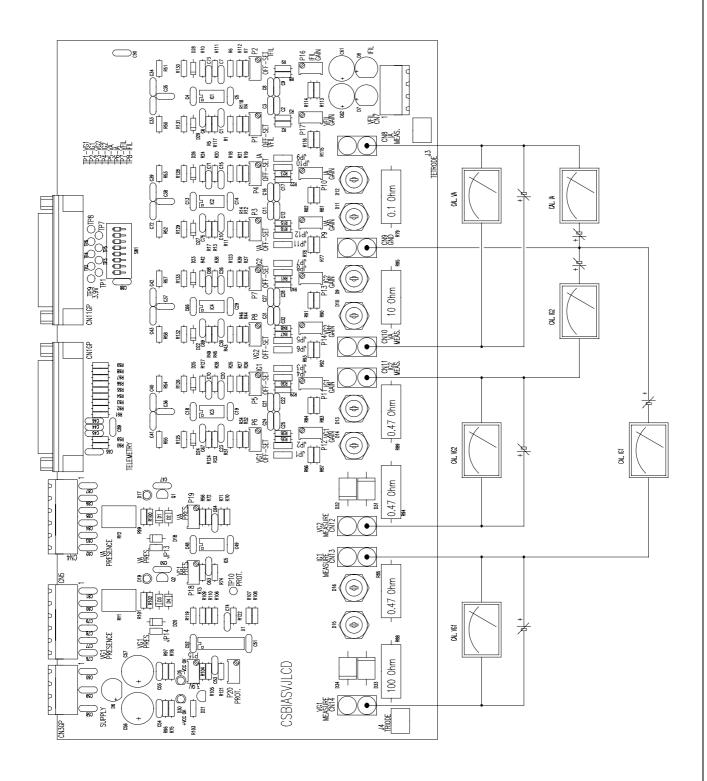
Terminate le operazioni precedenti si deve collegare un'alimentatore con un amperometro in serie per calibrare la massima corrente IA e IG1 (IG2 non presente su questa macchina, se la scheda fosse montata su un tetrodo bisogna considerare anche la IG2).

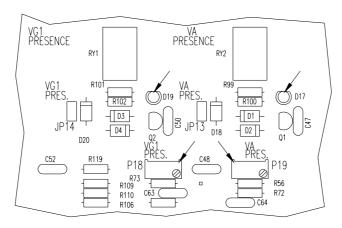
Una volta calibrate le tensioni in uscita sui Test Point mediante i trimmer posti sulla scheda multimetro, controllare che lo strumento, posto sul pannello a cerniera segni correttamente.

Se l'indicazione del multimetro non corrisponde al valore simulato controllare che il commutatore sia nella posizione "CAL" e che lo strumentino segni il fondo scala, altrimenti agire sul trimmer TR10 per calibrare lo strumento.

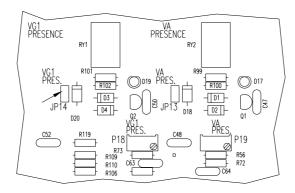
A questo punto si possono calibrare le misure con i trimmer posti sulla scheda misure che corrispondono alla misura desiderata. Una volta effettuata la taratura di corrente si possono calibrare la lettura di tensione, questa volta utilizzando però un multimetro per misurare i valori di tensione anche sull'ingresso. Naturalmente la tensione di VG1, VG2, VA vengono prese attraverso dei prelievi e per simulare la macchina accesa bisogna fare riferimento ai valori di tensione sulla tabella TABELLA D.

FIGURA 26 COLLEGAMENTO ALIMENTATORE PER CALIBRAZIONE TENSIONI USCITE SU TEST POINT

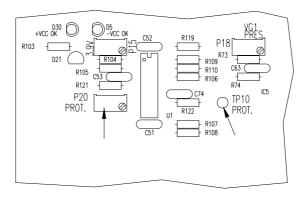


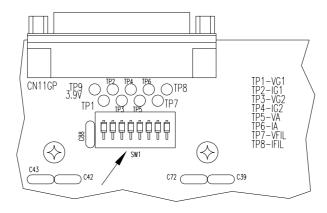

TABELLA D - PARAMETRI DI SETTAGGIO CON ALIMENTATORE

Modello VJ10000- TR	Volt Fil.	Currente Fil.	VA	IA	VG1	IG1	VG2	IG2
I° STEP input	4.58 V AC	3.36 V AC	172 mv	-	-	-	-	-
II° STEP input	7 V	6.04 V AC	190 mv	256 mV	549 mV	150 A	575 mV	446 mA
I° STEP Uscita Test Point	2.473 V	2.665 V DC	3.5 V	-	-	-	-	-
II° STEP Uscita Test Point	3.9 V	2.9 V DC	3.9 V	3.9 A	3.9 V	3.9 A	3.9 V DC	3.9 V DC
I° STEP Strumento Misura	4.4 V	86 A	7000 V DC	-	-	-	-	-
II° STEP Strumento Misura	7 V	110 A	7500 V DC	2.5 A	-184 V	30 mA	760	100 mA
I° STEP LCD Misura	4.5 V	100 A	7 KW	-	-	-	-	-
II° STEP LCD Misura	7 V	110 A	7.5 KW	2.5 A	- 177 V	30 mA	758	101 mA
I° STEP Fluke Misura	-	-	-	-	-	-	-	-
II° STEP Fluke Misura	-	-	-	-	-	-	-	-


Sulla scheda misure vi sono presenti n° 1 trimmer P18 corrispondente alla VG1 presenza tensione e n°1 trimmer P19 corrispondente alla VA presenza tensione.

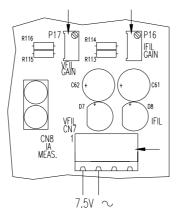
Questi due trimmer regolano le rispettive soglie per vedere la presenza di tensione VG1 e VA sulla macchina.


Una volta vista la presenza di tensione si chiudono i relè dando consenso alla scatola delle protezioni, inoltre si accendono i due led D19 e D17 per segnalare la presenza della tensione controllata.


Nel caso che sulla macchina vi sia una valvola Triodo il controllo della VG1 viene escluso in quanto questa tensione si crea in automatico quando la valvola è in potenza e viene fatto inserendo il Jumper JP14, <u>in modo che la sequenza di partenza sia ok, altrimenti la macchina non andrebbe mai in alta tensione</u>.

Un'ulteriore possibilità per poter controllare se la logica protezione funziona correttamente, è quella di generare una tensione regolabile di 3.95 V tramite il trimmer P20 e di poterlo misurare sul Test Point TP10

Azionando il Dipswich SW1 si può avere la tensione precedentemente settata sull'uscita


desiderata.

La corrispondenza degli interruttori e la seguente:

SW1	Test Point	Misura
1	TP8	I Filamento
2	TP7	V Filamento
3	TP6	I Anodo
4	TP5	V Anodo
5	TP4	IG2
6	TP3	VG2
7	TP2	IG1
8	TP1	VG1

La calibrazione della tensione di filamento e della corrente di filamento non si può fare con l'alimentatore, in quanto le misure vengono fatte con la tensione in alternata.

Per calibrare la tensione di filamento si deve applicare sui morsetti del CN7 una tensione pari a quella della valvola (ad esempio per la valvola 4CX7500 deve essere di 7V)e tramite il trimmer P17 portare la tensione in uscita sul Test Point al valore riportato sulla tabella di pag 48.

La misura della corrente di filamento avviene attraverso un TA che fornisce una tensione che varia da 2.5VAC a 3.5VAC.

Per la calibrazione del trimmer P16 procedere in questo modo:

- 1) inserire nello zoccolo la valvola e richiudere la cavità Rf perché possa essere poi accesa
- 2) sistemare una pinza amperometrica in modo da abbracciare uno dei due fili di alimentazione di filamento che si collegano allo zoccolo.
- 3) accendere l'apparato, settare lo switch min.fil st. by in posizione FUL FIL.
- 4) verificare che sia acceso il led NORMAL FIL PRES.
- 5) verificare sulla pinza amperometrica che la corrente assorbita sia quella di funzionamento nominale della valvola.
- 6) regolare P16 fino a leggere sul Test point 2.9 VDC.

Se non si riesce a trovare subito il livello di tensione la protezione potrebbe andare in FAULT per errore di CHEK LIST per questo ripetere l'operazione più volte fino a raggiungere il valore corretto sull'uscita Test Point come riportato sulla tabella misure di pag. 48.

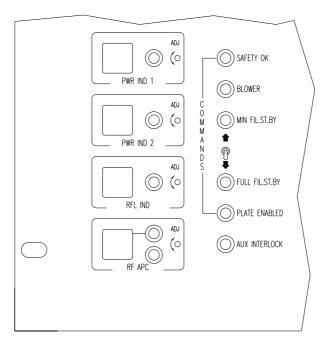


FIGURA 27 REPORT MISURE

AL TRE / OTHER:	380V TRIPHASE	220V MONOFASE MONOPHASE	MAIN VOLTAGE SELECTION
		SE	HONE

Γelec**@**m^{italia}

Tube amplifier techniques specifications (end tests) Scheda di controllo dell'amplificatore valvolare a fine collando

XX:XX	ORA	01°C	TEMP °C	24	20	21
XX:XX	DATA:	W 0	RFL PWR	7	t	10
END TESTS	FINE COLLAUDO / END TESTS	10 kW	FWD PWR	34	2)	20
			-	4.10 V	PROT	TP10
YES NOT	DRIVER			3.905 V	CAL	TP9
SI NO	PILOTI	10	*	Ť	t.	ı
		110 A	FIL CURR	2.962 V	IFIL	TP8
YES NOT	TUBE	7 V	FIL VOLT	3.953 V	VFIL	TP7
SI NO	AALVOLA	1.62 A	PLATE CURR	2.570 V	IA	TP6
		7500 V	PLATE VOLT	3.907 V	VA	TPS
WX	PWR LOWER	58 mA	SCREEN CURRENT	2.588 V	IG2	TP4
500 W	SWR WARNIG	780 V	SCREEN VOLT	3.912 V	VG2	TP3
25 kW	POWER GOOD 2	13 mA	GRID CURR	1.663 V	IG1	TP2
5 kW	POWER GOOD 1	- 182 V	GRID VOLT	3.917 V	VG1	TPI
		F.S.	CAL			
MEASURE	SETTINGS	AND CURRENT	MULTIMETER VOLTAGE AND DIPLAYED	MEASURE	TEST POINT VOLTAGE MEASURE	TEST PO
VALORI	SEITAGGI	SUALIZZATE DAL RO	TENSIONI E CORRENTI VISUALIZZATE DAL MULTIMETRO	TEST POINT	TENSIONI MISURATE SUI TEST POINT	TENSIONI
XX:XX	Operatore: Operator:	ė: x:xx	xx:xx Numero di Serie: Serail number:	xx:xx Finale Tipo: Machine:	Chente: Customer:	DATA: xx:xx DATE:

TABELLA E - PARAMETRI DI FUNZIONAMENTO A RIPOSO

PARAMETRO	4CX7500	
CORRENTE ANODICA	0~300 mA	
CORRENTE DI FILAMENTO	110 A	
TENSIONE DI FILAMENTO	$7V \pm 0.37V$	
TENSIONE DI GRIGLIA	-184 V DC	
TENSIONE SCHERMO	760 V DC	
TENSIONE ANODICA	- 7,5 KW	

TABELLA F - EQUIPAGGIAMENTO CONSIGLIATO PER I TEST

STRUMENTO	MODELLO CONSIGLIATO	SPECIFICHE
Carico Fittizio non induttivo	Bird 50 Ohm	P ≥ 10 KW
Wattmetro passante con prelievo	Bird Mod. 4715-200	50 Ohm
Alimentatore	HP6002A	0-50 V, 0-10 A

TABELLA G - PARAMETRI STABILIZZATORE DI TENSIONE

Modello	STM0K9/G codice ST1502
Potenza d'ingresso	max. 900 VA
Corrente d'ingresso	max. 4,1 A
Sensibilità	Regolabile da 0.5 a 5 %
Variazione tensione d'ingresso	$max. \pm 15 \%$
Efficienza	98 %
Stabilizzazione	con una precisione indipendente dal carico e dal fattore di potenza (cosφ)
Distorsione Armonica	Trascurabile
Velocità di risposta	> 30 V/sec (33 msec/V)
Precisione	± 0.5 %
Dimensioni	12.38" (315 mm) W 5.97" (152 mm) D 5.50" (140 mm) H
Temperatura di lavoro	da - 10°C a + 45°C
Peso	17.6 Lbs (8 Kg)

Data redazione: 25/07/03 R.V.R. Elettronica S.r.l. (BO) VJ10000-TE - R.F. Tube Amplifier

CAPITOLO 5

MANUTENZIONE

5.1 NORME DI SICUREZZA

ATTENZIONE ATTENZIONE ATTENZIONE ATTENZIONE ATTENZIONE

Quando l'amplificatore è in funzione, e il pannello posteriore è stato rimosso, all'interno della macchina sono presenti pericolose tensioni. Usare degli utensili isolati per qualsiasi tipo di taratura e non toccare alcun componente all'interno dell'apparato quando questo è acceso. Accertarsi che le tensioni all'interno siano state cortocircuitate a massa (servirsi eventualmente di un fioretto).

Assicurarsi di disconnettere l'alimentazione di rete dell'amplificatore prima di effettuare qualsiasi operazione di manutenzione.

PRIMO LIVELLO DI MANUTENZIONE

5.2 MANUTENZIONE ORDINARIA

L'unica manutenzione ordinaria di cui necessita l'amplificatore è il periodico controllo delle ventole, e la sostituzione del filtro dell'aria e la pulizia da tracce di polvere eventualmente accumulate all'interno della cavità della valvola e del filtro dell'aria.

Tale periodicità dipende dalle condizioni di funzionamento della macchina, temperatura ambiente, livello di polvere nell'aria, umidità.

Si consiglia di effettuare un controllo preventivo ad intervalli di 3 mesi e di sostituire le ventole che presentassero rumore o attriti successivi. Inoltre, ad intervalli periodici, si rende necessaria la sostituzione della valvola. Il numero di ore di vita della valvola è fortemente dipendente dalle condizioni di funzionamento, esempio: tensione di rete con variazioni maggiori di ± 5%, temperatura ambiente maggiore di 30°C, forte umidità, presenza di polvere e non corretta taratura dell'amplificatore, sono cause di forte riduzione di durata della valvola

SECONDO LIVELLO DI MANUTENZIONE

5.3 SOSTITUZIONE DEI MODULI COMPONENTI

N.B. PER RIMONTARE I MODULI ESEGUIRE LA PROCEDURA CON LA SEQUENZA INVERSA.

N.B. TALI OPERAZIONI DEVONO ESSERE EFFETTUATE DA TECNICI ALTAMENTE SPECIALIZZATI E DOTATI DELLE ATTREZZATURE NECESSARIE.

OPERAZIONI ERRATE POSSONO PROVOCARE UN SERIO DANNEGGIAMENTO DELLA MACCHINA E FANNO DECADERE AUTOMATICAMENTE LA GARANZIA.

5.4 SOSTITUZIONE DELLA VALVOLA

- 1) Portare con il comando OUPUT TUNE, il piano scorrevole fino al fine corsa superiore (barre tutte estratte).
- 2) Disconnettere l'alimentazione principale dalla macchina.
- 3) Assicurarsi che la valvola da sostituire si sia raffreddata sufficientemente per evitare gravi ustioni.
- 4) Assicurarsi che tutte le tensioni interne siano scese a livello 0V, eventualmente cortocircuitare a massa con fioretto.
- 5) Aprire il pannello frontale a cerniera svitando le apposite viti (FIGURA 15).
- 6) Svitare le viti di fissaggio del pannello interno della camera a radiofrequenza.
- 7) Allentare l'anello di placca ed alzarlo fino al punto massimo superiore e mantenerlo in tale posizione.
- 8) Rimuovere il blocchetto dell'Alta Tensione sul cappuccio della valvola.
- 9) Sfilare la valvola dal suo zoccolo di supporto, esercitando una trazione perpendicolare alla base (verso l'alto) e contemporaneamente ruotare la valvola in un senso o nell'altro per diminuire gli attriti.
- 10) Per rimontare la valvola procedere come dal punto 6 nel paragrafo 3.3 Montaggio della valvola.

5.5 SOSTITUZIONE DEL FILTRO DELL'ARIA

- 1) Non serve disattivare la macchina.
- 2) Aprire la griglia posteriore (FIGURA 2) del filtro dell'aria svitando le viti di fissaggio.
- 3) Sostituire il filtro dell'aria (feltro), pulendo con molta cura l'interno.
- 4) Richiudere la griglia posteriore del filtro dell'aria avvitando tutte le viti di fissaggio.

Data redazione: 25/07/03 R.V.R. Elettronica S.r.l. (BO) VJ10000-TE - R.F. Tube Amplifier

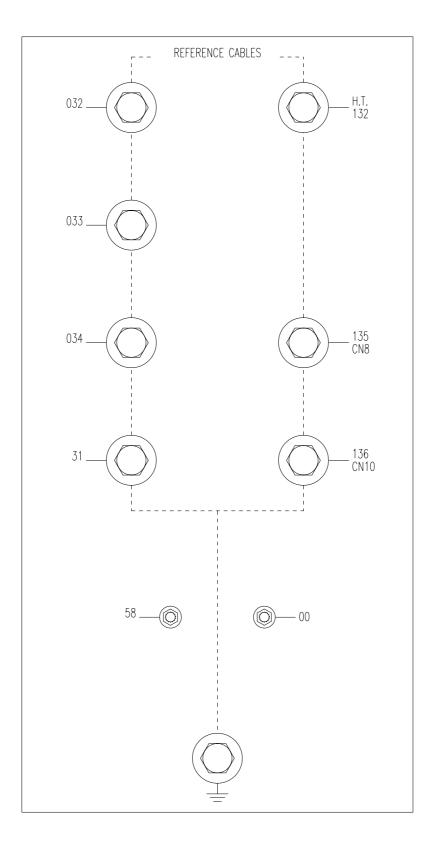
CAPITOLO 6

TARATURA

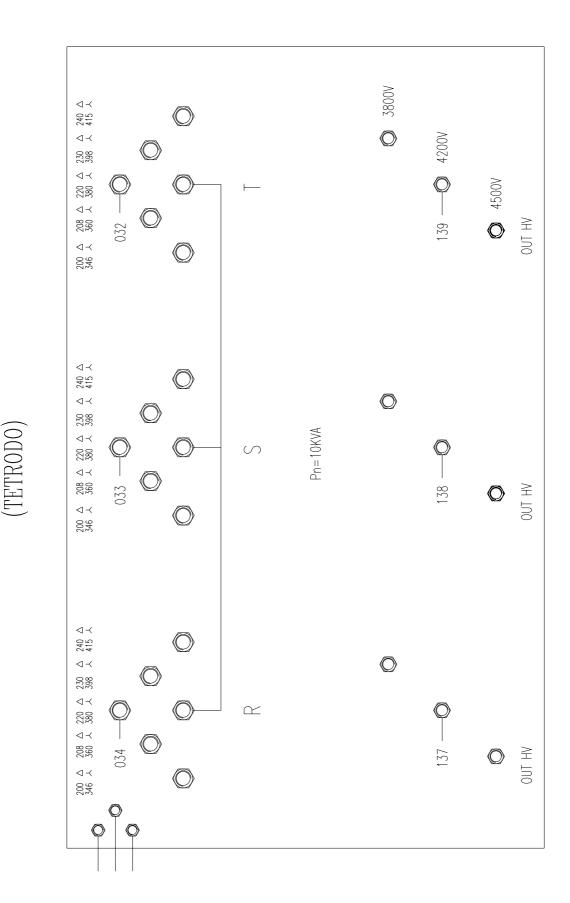
N.B. TALI OPERAZIONI DEVONO ESSERE EFFETTUATE DA TECNICI ALTAMENTE SPECIALIZZATI E DOTATI DELLE ATTREZZATURE NECESSARIE. OPERAZIONI ERRATE POSSONO PROVOCARE UN SERIO DANNEGGIAMENTO DELLA MACCHINA E FANNO DECADERE AUTOMATICAMENTE LA GARANZIA.

6.1 CAMBIO FREQUENZA

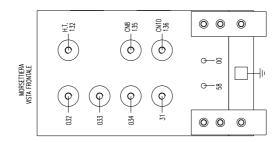
Per poter effettuare un cambio frequenza in un amplificatore valvolare occorre eseguire le seguenti operazioni:


- 1) Collegare inizialmente solo l'eccitatore (30W max Es. PTX30-UHT) all'ingresso dell'amplificatore VJ10000 escludendo eventuali driver.
- 2) Regolare il comando di potenza dell'eccitatore per la minima potenza.
- 3) Alimentare l'amplificatore e preposizionare il comando OUPUT TUNE in funzione della frequenza di funzionamento).
- 4) Atteso il tempo di riscaldamento e ottenuto l'aggancio dell'eccitatore sulla frequenza programmata, aumentare la potenza in uscita dell'eccitatore fino a circa 20 W.
- 5) Abilitare ed agire sui comandi INPUT LOAD e INPUT TUNE per azzerare la potenza riflessa in ingresso.
- 6) L'operazione precedente provocherà un aumento della corrente anodica; ora agire sui comandi OUPUT TUNE e OUPUT LOAD per ottenere la massima potenza in uscita leggibile sul wattmetro. Il deviatore RFL PWR/FOR PWR deve essere sulla posizione FOR PWR.
- 7) Incrementare la potenza in ingresso e ritoccare i comandi OUPUT TUNE e OUPUT LOAD sempre per ottenere la massima potenza.
- 8) Riposizionare al minimo la potenza dell'eccitatore e spegnerlo.
- 9) Inserire il driver tra l'eccitatore ed il finale.
- 10) Alimentare sia il pilota che il driver.
- Aumentare la potenza ritoccando le tarature di OUPUT LOAD e OUPUT TUNE ed anche di INPUT LOAD e INPUT TUNE fino ad ottenere i 10 KW in uscita.
- 12) Ottenuti i 10 KW, effettuare piccoli ritocchi con la stessa procedura sulle tarature fino ad ottenere la stessa potenza in uscita con il minimo assorbimento di placca, eventualmente diminuire la potenza del pilota.

APPENDICE A


CIRCUITI ELETTRICI E PIANI DI MONTAGGIO

Questo capitolo contiene gli schemi elettrici e i piani di motnaggio che compongono la macchina.


FIGURA 28 MORSETTIERA DI ALIMENTAZIONE

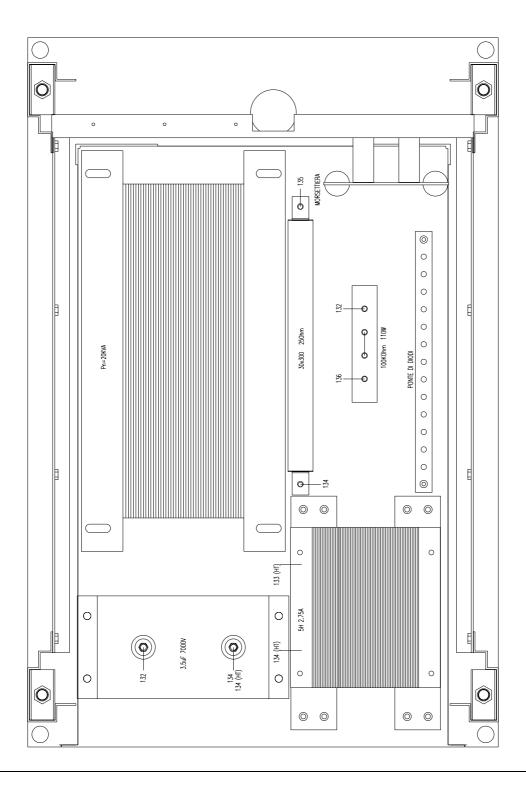


FIGURA 29 MORSETTIERA TRASFORMATORE TENSIONE ANODICA

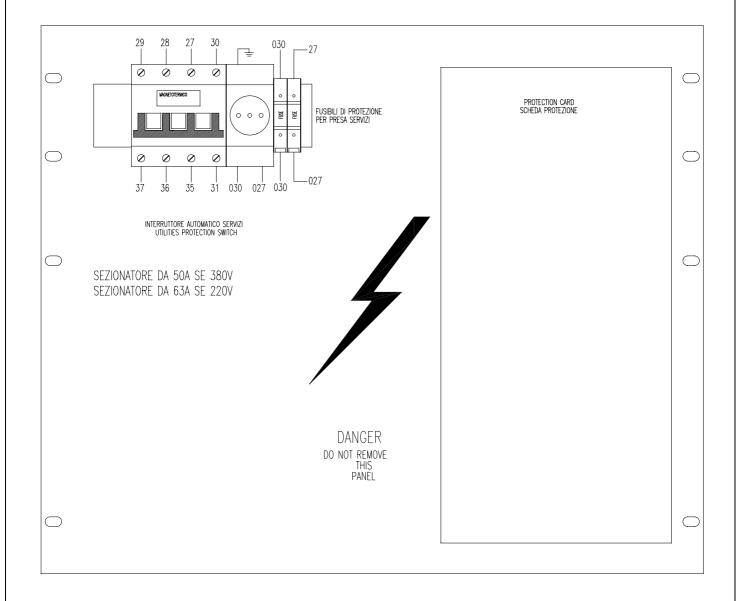
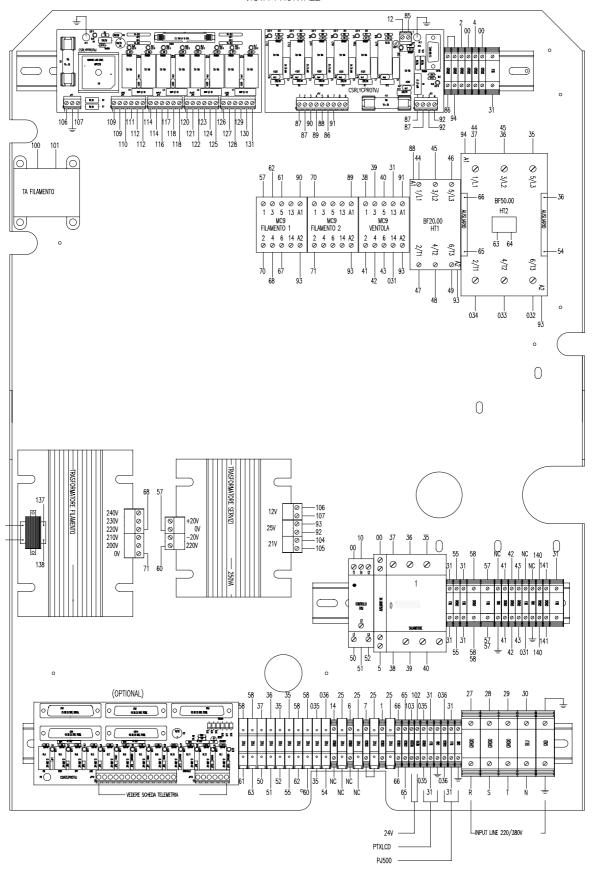
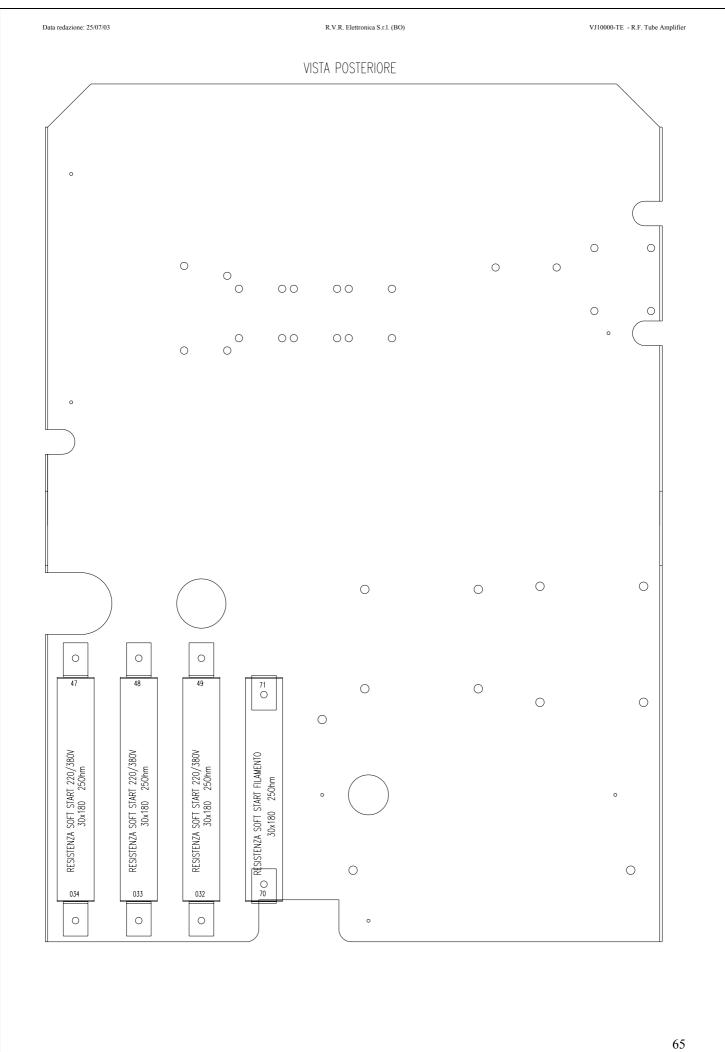
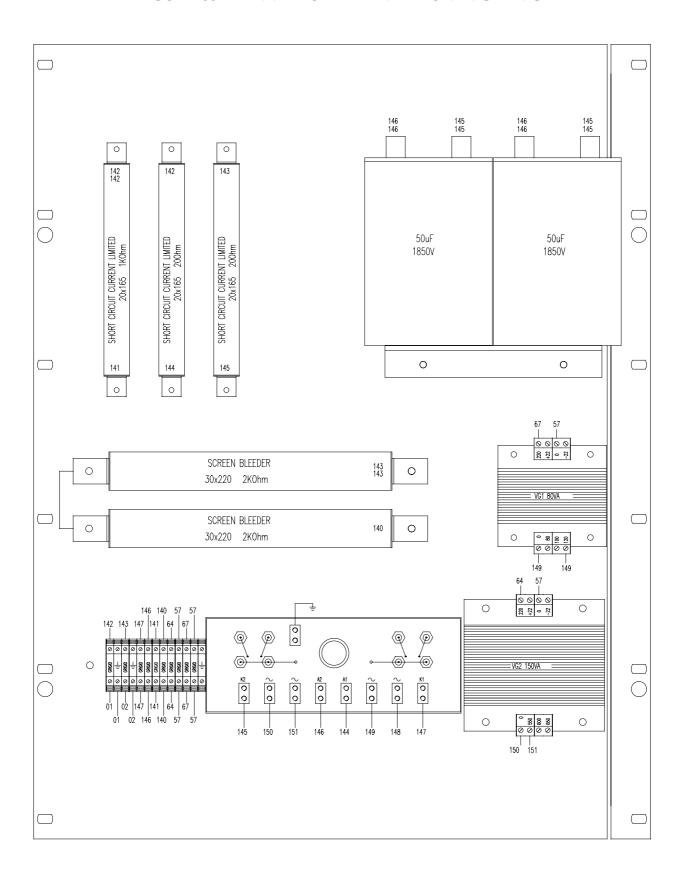


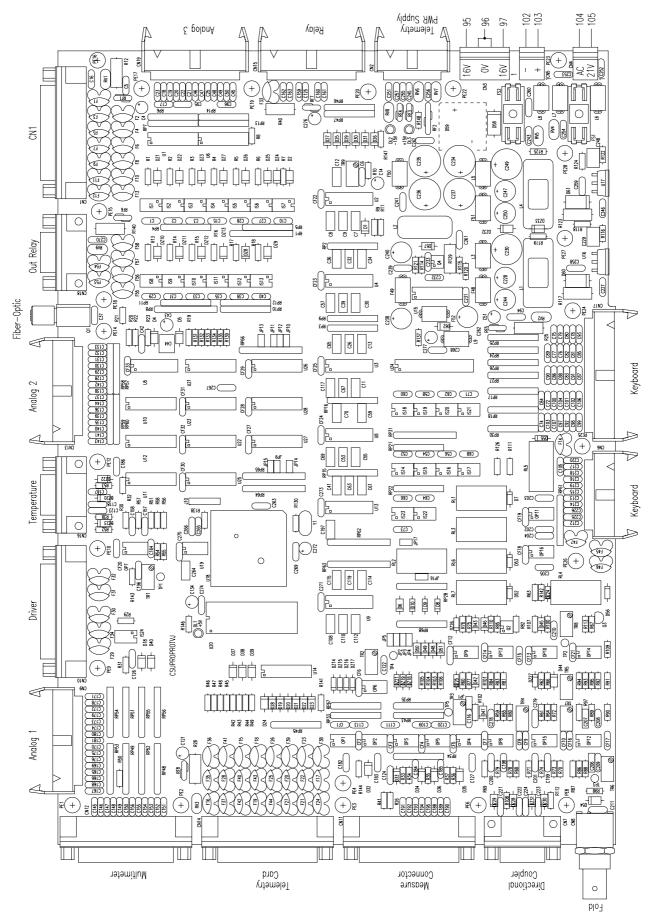
FIGURA 30 BASAMENTO ALIMENTAZIONE RACK

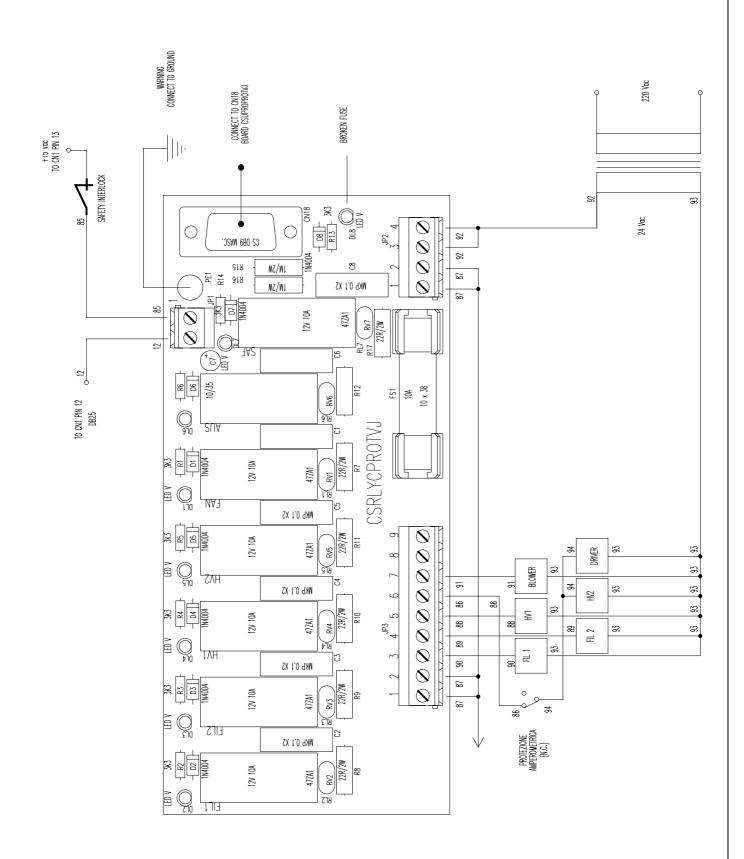


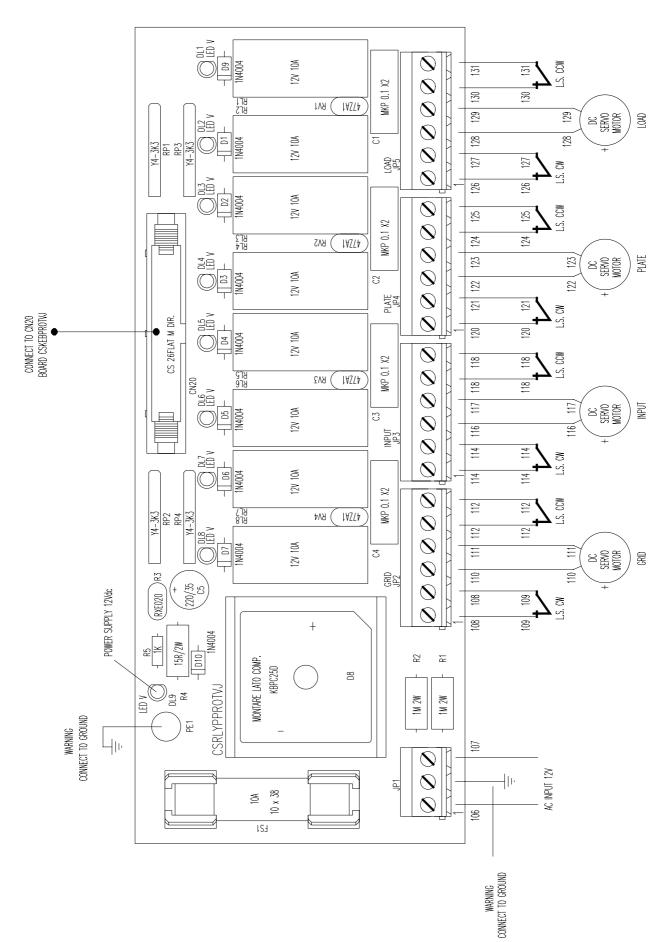

FIGURA 31 PANNELLO ALTA TENSIONE

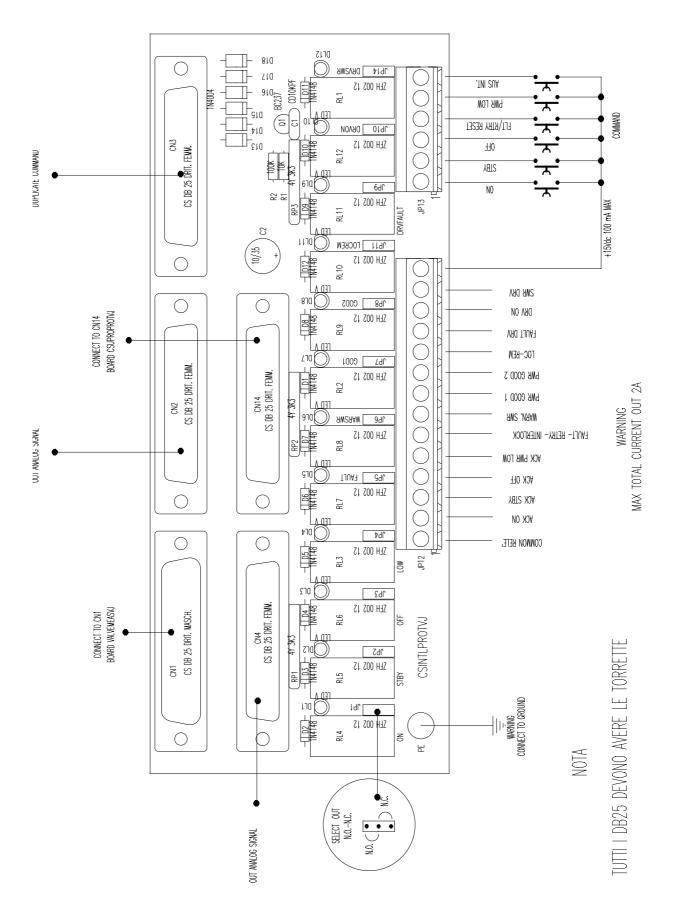

FIGURA 32 PIANO ELETTROMECCANICO (TETRODO)

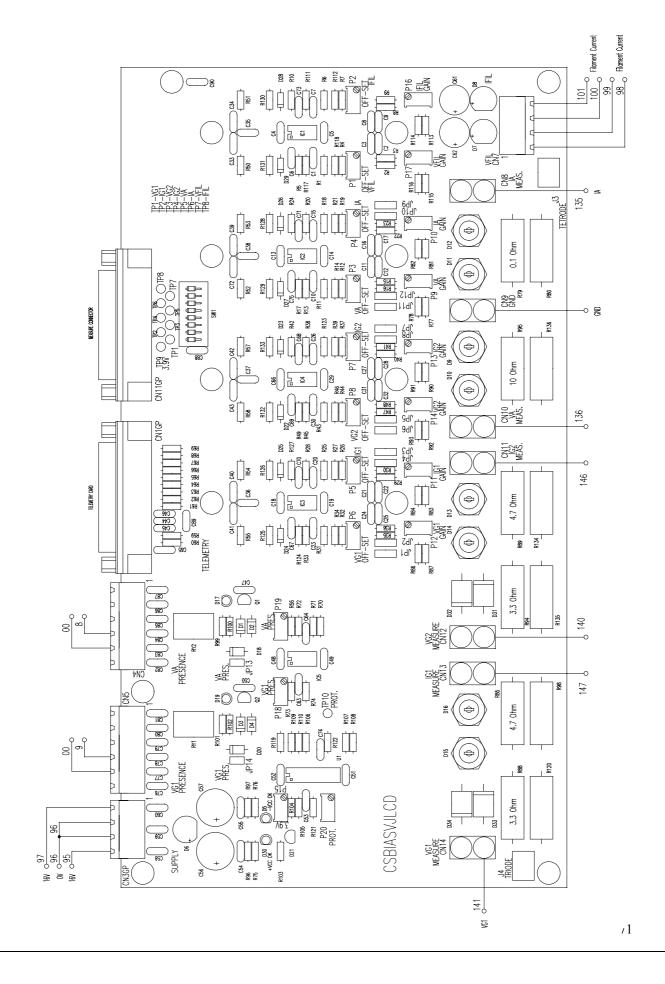
VISTA FRONTALE




FIGURA 33 - PANNELLO ALIMENTAZIONE VG1 E VG2


FIGURA 34 SCHEDA PROTEZIONI VALVOLARI


FIGURA 35 SCHEDA RELE' POTENZA


FIGURA 36 SCHEDA RELE' SINTONIE

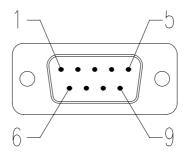

FIGURA 37 SCHEDA INTERFACCIA TELEMETRIA

FIGURA 38 SCHEDA MISURE CALIBRAZIONE

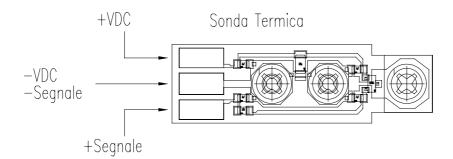
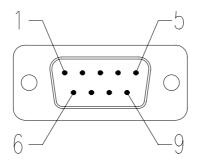
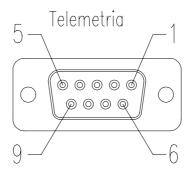


FIGURA 39 CONNETTORE PER SONDA TERMICA



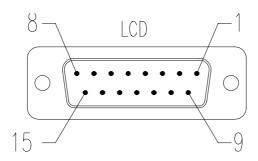
9 Pin Male Connector

	Connettore per Sonda Termica	
Pin n°	Descrizione	Colore Cavo
1	Segnale (-)	Marrone
2	Segnale (+)	Verde
3	Non Connesso	
4	Non Connesso	
5	+VDC	Bianco
6	-VDC	Giallo
7	Non Connesso	
8	Non Connesso	
9	Schermo	Calza


FIGURA 40 CONNETTORE PER LA MISURA DI P.W.R.

9 Pin Male Connector

	Connettore per la misura di P.W.R.	
Pin n°	Descrizione	Colore Cavo
1	N.C.	
2	N.C.	
3	N.C.	
4	N.C.	
5	SCHERMO	
6	P. DIRETTA (-)	Rosso/Giallo
7	P. DIRETTA (+)	Blu/Marrone
8	P. RIFLESSA (-)	Verde
9	P. RIFLESSA (+)	Bianco


FIGURA 41 CONNETTORE PER 12 CBUS SCATOLA TELEMTRIA

9 Pin Female Connector

	l² CBUS Scatola Telemetria	
Pin n°	Descrizione	Colore Cavo
1		
2	SEGNALE	Bianco
3	SEGNALE	Marrone
4		
5	GND	
6	/.	
7	7	
8		
9		

FIGURA 42 CONNETTORE PER PTXLCD

15 Pin Male Connector

Connettore PTX30LCD		
Pin n°	Descrizione	Colore Cavo
1		
2	CONTROLLO POTENZA	RG58
3	GND	
4	SEGNALE	Bianco
5		
6		
7		
8		
9	GND	
10		
11	SEGNALE	Marrone
12	/,	
13		
14	/.	
15		

FIGURA 43 CIRCUITO BASSA TENSIONE

FIGURA 44 CIRCUITO 380V

FIGURA 45 CIRCUITO MISURE E ALLARMI

FIGURA 46 SCHEMA ELETTRICO

© Copyright 2001

R.V.R. Elettronica S.p.a. (Bo) Via del Fonditore 2/2c - 40138 - Bologna (Italy)

Telephone: + 39 - 51 - 6010506

Fax: + 39 - 51 - 6011104

e-mail: info@rvr.it

www.rvr.it

Data redazione: 25/07/03	R.V.R. Elettronica S.r.l. (BO)	VJ10000-TE - R.F. Tube Amplifier

Stampato e creato in Italia. Tutti i diritti riservati. Nessuna parte di questo manuale può essere riprodotta o essere utilizzata in qualsiasi forma o con qualsiasi mezzo, elettronico o meccanico, incluse fotocopie senza precedentemente richiedere permesso per iscritto dall'editore.